
Computational chemistry at the 
petascale: tools in the tool box

Robert J. Harrison
harrisonrj@ornl.gov

robert.harrison@utk.edu

mailto:harrisonrj@ornl.gov
mailto:robert.harrison@utk.edu


The DOE funding
• This work is funded by the U.S. Department of Energy, the 

division of Basic Energy Science, Office of Science, under 
contract DE-AC05-00OR22725 with Oak Ridge National 
Laboratory. This research was performed in part using 
– resources of the National  Energy Scientific Computing 

Center which is supported by the Office of Energy 
Research of the U.S. Department of  Energy under 
contract DE-AC03-76SF0098, 

– and the Center for Computational Sciences at Oak Ridge 
National Laboratory under contract DE-AC05-00OR22725 
. 



Chemical Computations on Future High-end Computers
Award #CHE 0626354, NSF Cyber Chemistry

• NCSA (T. Dunning, PI)
• U. Tennessee (Chemistry, EE/CS)
• U. Illinois UC (Chemistry)
• U. Pennsylvania (Chemistry)
• Conventional single processor performance no 

longer increasing exponentially 
– Multi-core

• Many “corners” of chemistry will increasingly be 
best served by non-conventional technologies
– GP-GPU, FPGA, MD Grape/Wine 



4/20/2007 Robert J. Harrison, UT/ORNL Joint Insititute of Computational Science4

Description of Graphic Image:
A tree-based algorithm (here in 1D, but in 
actuality in 3-12D) is naturally implemented 
via recursion.  The data in subtrees is 
managed in chunks and the computation 
expressed very compactly.

Website:
http://www.cse.ohio-state.edu/~saday/

Institution:
The Ohio State University
Louisiana State University
University of Tennessee, Knoxville

Investigators:
P. Sadayappan (PI) G. Baumgartner, D. 
Bernholdt, R.J. Harrison, J. Nieplocha, J. 
Ramanujam and A. Rountev

Project Title:
Collaborative research: CAS-AES: An integrated 
framework for compile-time/run-time support for 
multi-scale applications on high-end systems

Award No:
NSF CNS-0509410



Science Opportunities
• The chemical industry represents 10% of all U.S. manufacturing, employing more than 

one million Americans. 

• These fields require petascale computing coordinated with experimental programs for 
significant innovation

• Clean energy innovations for automobiles and industry (catalysis, fuel cells, combustion). 
– Catalysts design is presently a misnomer … it is an Edisonian process
– Only theory+advanced computing can enable rational design 
– Catalytic processes are directly involved in the synthesis of 20% of all industrial products. 

• Molecular models for biological processes (protein and membrane function).  
– Modeling excited electronic states in photochemical systems and averaging over dynamics of the 

macromolecular structure potentially over very long timescales.

• Heavy element chemistry for advanced fuel cycles and environmental restoration.  
– These are special responsibilities of the DOE and petascale chemistry can replace many expensive 

experiments, and shorten timescales from decades to years. 

• Dynamics of atoms and molecules interacting with electrons and powerful laser fields. 
– These are fundamental and defining challenges in physics and chemistry for the 21st century, and 

have been seeking for a solution for more than 50 years. 
– All major advances in this field are a result of new computational capabilities



Computational catalysis

• Currently allocated 6+M hours between NCCS, 
NERSC, EMSL
– Need a sustained 10-100x increase

• Approach
– Large systems accurately described with modern 

hybrid and meta DFT functionals 
• Chemistry codes have the advantage here
• Full petascale simulation only for the largest runs

– Higher-accuracy necessary for quantitative rates 
and for calibration on smaller systems

• Many-body methods – demonstrated scaling to 10K 
processors and predicted to go to 100+K

• 75% of peak speed on EMSL HP cluster 1700 cpu
• Outcomes

– Rational design of novel catalyst(s)
– Future savings of $B in various industries
– Cleaner energy sources

Mavrikakis, Wisconsin.
H2 dissociation path on a 
bimetallic NSA surface.



The role of simulation in heavy element 
chemistry for advanced fuel cycles

• Molecular-scale knowledge is vital to enable the 
rational design of new/enhanced agents

– Reduced cost & risk with increased efficiency
– Current experimental approach can generate 

only a fraction of required data over many years
• The rest are guesstimated.

– We can compute much of this
• Need higher precision than currently feasible

– Combinatorial methods use thermodynamics for 
screening, but this is not reliable enough

• Approach
– Mixed MM/QM Gibbs-free energy computations of 

partition coefficients
– Simulation of select liquid-liquid, gas-gas interfaces 
– Accurate thermo-chemistry and spectroscopy

• Many-body methods incorporating relativistic effects 

• Outcomes
– Design of new separation chemistries on a timescale 

relevant to engineering requirements (months to years 
rather than decades)

B. Hay, EMSP project 73759



Issues

• Eliminate gulf between theoretical 
innovation in small groups and realization 
on high-end computers

• Eliminate the semantic gap so that 
efficient parallel code is no harder than 
doing the math

• Hardware/software architecture and 
programming models for 20xx

• Feasibility, support and maintenance



Major Molecular Electronic 
Structure Packages

• MOLPRO, MOLCAS, Turbomol, NWChem, 
GAMESS-US, GAMESS-UK, Gaussian, Jaguar, 
MPQC, ACES, QChem

• Wide range of functionality and algorithms
• Applicable to much of chemistry
• Vary greatly in speed, robustness, scalability, 

methods, …
• Several codes often used within any one project

• circa 20M lines of code … 



Computational Chemistry Endstation
Open, international collaboration: 8 universities & 5 national labs 

• Led out of UT/ORNL
• Focus

– Actinides, Aerosols, Catalysis

• ORNL Cray XT3, ANL BG/L

1 10 100 1000 10000
0

0.01

0.1

1

10

P

T
im

e
/s

Capabilties:
• Chemically accurate thermochemistry

•  Many-body methods required
• Mixed QM/QM/MM dynamics

•  Accurate free-energy integration
•  Simulation of extended interfaces

• Families of relativistic methods

Scaling of MADNESS 64-4096 cpu on XT3

NWChem:  Largest CCSD(T) calculation 
-  Pollack, PNNL/EMSL, 2005. 
-  1960 processor Itanium2 cluster
-  1468 basis functions (aug-cc-pVQZ) 
-  Perturbative triples (T) 

-  23 hours on 1400 processors
-  75% of peak = 6.3 TFlops. 



Trends in Chemistry Codes - I
• All scalable codes use one-sided communication in 

various forms
– Ease of programming; increased scalability

• QM/MM, multi-scale methods, direct dynamics, …
– Multi-physics methods present scalability challenges 

• Multi-level methods (FMM, multi-resolution, multi-
grid, mixed-bases) in both space and time
– A path to (near) linear or optimal scaling without sacrificing 

accuracy
– Fully numerical real space methods

• Gaussian bases becoming attractive alternative to 
plane waves at low/medium precision? (Hütter)



Molecular Science Software ProjectMolecular Science Software Project

Gary Black,
Brett Didier,
Todd Elsenthagen,
Sue Havre,
Carina Lansing,
Bruce Palmer,
Karen Schuchardt,
Lisong Sun
Erich Vorpagel

PNNL
Yuri Alexeev,
Eric Bylaska,
Bert deJong,
Mahin Hackler, 
Karol Kowalski,
Lisa Pollack,
Tjerk Straatsma,
Marat Valiev, 
Theresa Windus
ORNL
Edo Apra,
Robert Harrison
Vincent Meunier     Ames
Ricky Kendall         TL Windus

Manoj Krishnan, Jarek Nieplocha, 
Bruce Palmer, Vinod Tipparaju

http://www.emsl.pnl.gov/docs/nwchem/nwchem.html

http://www.emsl.pnl.gov/docs/nwchem/nwchem.html
http://www.emsl.pnl.gov/docs/nwchem/nwchem.html


Global Arrays 

• Shared-memory-like model
– Fast local access
– NUMA aware and easy to use
– MIMD and data-parallel modes
– Inter-operates with MPI, …

• BLAS and linear algebra interface
• Ported to major parallel machines

– IBM, Cray, SGI, clusters,...

• Originated in an HPCC project
• Used by most major chemistry 

codes, financial futures forecasting, 
astrophysics, computer graphics

• Supported by DOE 

• Jarek Nieplocha, PNNL
Single, shared data structure

Physically distributed data

http://www.emsl.pnl.gov/docs/global/



local memory

Non-uniform memory access model of 
computation

Shared Object

copy to local m
em

ory

Shared Object

 c
op

y 
to

 s
ha

re
d 

ob
je

ct

local memorylocal memory

compute/update

1-sided
communication

1-sided
communication



Dµν
While ((task = SharedCounter())< max)

call ga_get(                                      )

(do work)

call ga_acc(                                      )
End while
Barrier()

Fρσ

Dynamic load balancing



Trends in Chemistry Codes - II
• Multi-level parallelism

– An effective path for most applications to scale to 100K 
processors without vast effort

• Coarse grain over vibrational degrees of freedom in numerical 
hessian, or geometries in a surface scan or parameter study

• Conventional distributed memory within each subtask
• Fine grain parallelism within a few  processor SMP (multi-threads, 

OpenMP, parallel BLAS, …)

– Efficient exploitation of fine grain parallelism is a major 
concern on future architectures

• MADNESS side steps some of these issues
• Community effort to increase interoperability and 

leverage new capabilities between codes
– CCA being adopted



Numerical Hessians
Driver

Gradient GradientGradient Gradient

Energy EnergyEnergy

EnergyEnergyEnergy

Energy

Energy

Energy Energy Energy Energy

CCA

QM

TL Windus, formerly PNNL



Synthesis of High Performance Algorithms 
for Electronic Structure Calculations

http://www.cis.ohio-state.edu/~gb/TCE

• Collaboration between DOE/SciDAC, NSF/ITR and ORNL/LDRD 
• Objective: develop a high level programming tool that translates many-body 

quantum theory into efficient massively parallel codes.  This is anticipated to 
revolutionize the rate of progress in this field by eliminating man-years of 
programming effort. 

• NSF Project: 
• Sadayappan (PI), Baumgartner, Cociorva, Pitzer (OSU) 

Bernholdt, Harrison (unfunded) (ORNL)
Ramanujam  (LSU)
Nooijen    (Waterloo)

• DOE SciDAC: Harrison (PI), Hirata (PNNL)
• DOE ORNL/LDRD: Bernholdt (PI, 2002-3)
• Other SciDAC projects adopting this tool: Piecuch, Gordon
• Also being applied to nuclear physics (Bernholdt and Dean)



CCSD Doubles Equation
hbar[a,b,i,j] == sum[f[b,c]*t[i,j,a,c],{c}] -sum[f[k,c]*t[k,b]*t[i,j,a,c],{k,c}] +sum[f[a,c]*t[i,j,c,b],{c}] -sum[f[k,c]*t[k,a]*t[i,j,c,b],{k,c}] 

-sum[f[k,j]*t[i,k,a,b],{k}] -sum[f[k,c]*t[j,c]*t[i,k,a,b],{k,c}] -sum[f[k,i]*t[j,k,b,a],{k}] -sum[f[k,c]*t[i,c]*t[j,k,b,a],{k,c}] 
+sum[t[i,c]*t[j,d]*v[a,b,c,d],{c,d}] +sum[t[i,j,c,d]*v[a,b,c,d],{c,d}] +sum[t[j,c]*v[a,b,i,c],{c}] -sum[t[k,b]*v[a,k,i,j],{k}] 
+sum[t[i,c]*v[b,a,j,c],{c}] -sum[t[k,a]*v[b,k,j,i],{k}] -sum[t[k,d]*t[i,j,c,b]*v[k,a,c,d],{k,c,d}] -sum
[t[i,c]*t[j,k,b,d]*v[k,a,c,d],{k,c,d}] -sum[t[j,c]*t[k,b]*v[k,a,c,i],{k,c}] +2*sum[t[j,k,b,c]*v[k,a,c,i],{k,c}] -sum
[t[j,k,c,b]*v[k,a,c,i],{k,c}] -sum[t[i,c]*t[j,d]*t[k,b]*v[k,a,d,c],{k,c,d}] +2*sum[t[k,d]*t[i,j,c,b]*v[k,a,d,c],{k,c,d}] -sum
[t[k,b]*t[i,j,c,d]*v[k,a,d,c],{k,c,d}] -sum[t[j,d]*t[i,k,c,b]*v[k,a,d,c],{k,c,d}] +2*sum[t[i,c]*t[j,k,b,d]*v[k,a,d,c],{k,c,d}] -sum
[t[i,c]*t[j,k,d,b]*v[k,a,d,c],{k,c,d}] -sum[t[j,k,b,c]*v[k,a,i,c],{k,c}] -sum[t[i,c]*t[k,b]*v[k,a,j,c],{k,c}] -sum[t[i,k,c,b]*v[k,a,j,c],{k,c}] 
-sum[t[i,c]*t[j,d]*t[k,a]*v[k,b,c,d],{k,c,d}] -sum[t[k,d]*t[i,j,a,c]*v[k,b,c,d],{k,c,d}] -sum[t[k,a]*t[i,j,c,d]*v[k,b,c,d],{k,c,d}] 
+2*sum[t[j,d]*t[i,k,a,c]*v[k,b,c,d],{k,c,d}] -sum[t[j,d]*t[i,k,c,a]*v[k,b,c,d],{k,c,d}] -sum[t[i,c]*t[j,k,d,a]*v[k,b,c,d],{k,c,d}] -sum
[t[i,c]*t[k,a]*v[k,b,c,j],{k,c}] +2*sum[t[i,k,a,c]*v[k,b,c,j],{k,c}] -sum[t[i,k,c,a]*v[k,b,c,j],{k,c}] 
+2*sum[t[k,d]*t[i,j,a,c]*v[k,b,d,c],{k,c,d}] -sum[t[j,d]*t[i,k,a,c]*v[k,b,d,c],{k,c,d}] -sum[t[j,c]*t[k,a]*v[k,b,i,c],{k,c}] -sum
[t[j,k,c,a]*v[k,b,i,c],{k,c}] -sum[t[i,k,a,c]*v[k,b,j,c],{k,c}] +sum[t[i,c]*t[j,d]*t[k,a]*t[l,b]*v[k,l,c,d],{k,l,c,d}] -2*sum
[t[k,b]*t[l,d]*t[i,j,a,c]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[k,a]*t[l,d]*t[i,j,c,b]*v[k,l,c,d],{k,l,c,d}] 
+sum[t[k,a]*t[l,b]*t[i,j,c,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[j,c]*t[l,d]*t[i,k,a,b]*v[k,l,c,d],{k,l,c,d}] -2*sum
[t[j,d]*t[l,b]*t[i,k,a,c]*v[k,l,c,d],{k,l,c,d}] +sum[t[j,d]*t[l,b]*t[i,k,c,a]*v[k,l,c,d],{k,l,c,d}] -2*sum
[t[i,c]*t[l,d]*t[j,k,b,a]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,c]*t[l,a]*t[j,k,b,d]*v[k,l,c,d],{k,l,c,d}] 
+sum[t[i,c]*t[l,b]*t[j,k,d,a]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,k,c,d]*t[j,l,b,a]*v[k,l,c,d],{k,l,c,d}] 
+4*sum[t[i,k,a,c]*t[j,l,b,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[i,k,c,a]*t[j,l,b,d]*v[k,l,c,d],{k,l,c,d}] -2*sum
[t[i,k,a,b]*t[j,l,c,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[i,k,a,c]*t[j,l,d,b]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,k,c,a]*t[j,l,d,b]*v[k,l,c,d],{k,l,c,d}] 
+sum[t[i,c]*t[j,d]*t[k,l,a,b]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,j,c,d]*t[k,l,a,b]*v[k,l,c,d],{k,l,c,d}] -2*sum
[t[i,j,c,b]*t[k,l,a,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[i,j,a,c]*t[k,l,b,d]*v[k,l,c,d],{k,l,c,d}] +sum[t[j,c]*t[k,b]*t[l,a]*v[k,l,c,i],{k,l,c}] 
+sum[t[l,c]*t[j,k,b,a]*v[k,l,c,i],{k,l,c}] -2*sum[t[l,a]*t[j,k,b,c]*v[k,l,c,i],{k,l,c}] +sum[t[l,a]*t[j,k,c,b]*v[k,l,c,i],{k,l,c}] -2*sum
[t[k,c]*t[j,l,b,a]*v[k,l,c,i],{k,l,c}] +sum[t[k,a]*t[j,l,b,c]*v[k,l,c,i],{k,l,c}] +sum[t[k,b]*t[j,l,c,a]*v[k,l,c,i],{k,l,c}] 
+sum[t[j,c]*t[l,k,a,b]*v[k,l,c,i],{k,l,c}] +sum[t[i,c]*t[k,a]*t[l,b]*v[k,l,c,j],{k,l,c}] +sum[t[l,c]*t[i,k,a,b]*v[k,l,c,j],{k,l,c}] -2*sum
[t[l,b]*t[i,k,a,c]*v[k,l,c,j],{k,l,c}] +sum[t[l,b]*t[i,k,c,a]*v[k,l,c,j],{k,l,c}] +sum[t[i,c]*t[k,l,a,b]*v[k,l,c,j],{k,l,c}] 
+sum[t[j,c]*t[l,d]*t[i,k,a,b]*v[k,l,d,c],{k,l,c,d}] +sum[t[j,d]*t[l,b]*t[i,k,a,c]*v[k,l,d,c],{k,l,c,d}] 
+sum[t[j,d]*t[l,a]*t[i,k,c,b]*v[k,l,d,c],{k,l,c,d}] -2*sum[t[i,k,c,d]*t[j,l,b,a]*v[k,l,d,c],{k,l,c,d}] -2*sum
[t[i,k,a,c]*t[j,l,b,d]*v[k,l,d,c],{k,l,c,d}] +sum[t[i,k,c,a]*t[j,l,b,d]*v[k,l,d,c],{k,l,c,d}] +sum[t[i,k,a,b]*t[j,l,c,d]*v[k,l,d,c],{k,l,c,d}] 
+sum[t[i,k,c,b]*t[j,l,d,a]*v[k,l,d,c],{k,l,c,d}] +sum[t[i,k,a,c]*t[j,l,d,b]*v[k,l,d,c],{k,l,c,d}] +sum[t[k,a]*t[l,b]*v[k,l,i,j],{k,l}] 
+sum[t[k,l,a,b]*v[k,l,i,j],{k,l}] +sum[t[k,b]*t[l,d]*t[i,j,a,c]*v[l,k,c,d],{k,l,c,d}] +sum[t[k,a]*t[l,d]*t[i,j,c,b]*v[l,k,c,d],{k,l,c,d}] 
+sum[t[i,c]*t[l,d]*t[j,k,b,a]*v[l,k,c,d],{k,l,c,d}] -2*sum[t[i,c]*t[l,a]*t[j,k,b,d]*v[l,k,c,d],{k,l,c,d}] 
+sum[t[i,c]*t[l,a]*t[j,k,d,b]*v[l,k,c,d],{k,l,c,d}] +sum[t[i,j,c,b]*t[k,l,a,d]*v[l,k,c,d],{k,l,c,d}] 
+sum[t[i,j,a,c]*t[k,l,b,d]*v[l,k,c,d],{k,l,c,d}] -2*sum[t[l,c]*t[i,k,a,b]*v[l,k,c,j],{k,l,c}] +sum[t[l,b]*t[i,k,a,c]*v[l,k,c,j],{k,l,c}] 
+sum[t[l,a]*t[i,k,c,b]*v[l,k,c,j],{k,l,c}] +v[a,b,i,j]



range V = 3000;
range O = 100;

index a,b,c,d,e,f : V;
index i,j,k,l : O;

mlimit = 100GB;

procedure P(in A[V,V,O,O], in B[V,V,V,O], 
            in C[V,V,O,O], in D[V,V,V,O], 
            out S[V,V,O,O])=
begin
  S[a,b,i,j] == sum[ A[a,c,i,k] * B[b,e,f,l] 
                   * C[d,f,j,k] * D[c,d,e,l],
                     {c,e,f,k,l}];
end 

Tensor Contraction Engine (TCE)
• High-level domain-specific language for a 

class of problems in quantum 
chemistry/physics based on contraction of 
large multi-dimensional tensors

• Specialized optimizing compiler
– Produces F77+GA code, linked to runtime libs

Sabij=∑
cefkl

AacikBbeflCdfjkDcdel



NWChem CCSD(T) performance
• Performed with NWChem by EMSL staff 
• Closed-shell CCSD(T) calculations

– Hand-written code
– Octane (1468 basis functions, aug-cc-pVQZ) [Pollack, 2005].

• Perturbative triples (T) took 23 hours on 1400 processors, yielding 75% CPU efficiency 
and a sustained performance of 6.3 TFlops.  Fourteen iterations were required for 
convergence of the CCSD, which took approximately 43 hours on 600 processors.  

– Water cluster
• Perturbative triples (T) took 28 hours on 1840 processors, yielding 84% CPU efficiency 

and a sustained performance of 11.04 TF. 

• Large open-shell CCSD(T)
– TCE machine-generated code
– CF3CHFO* (605 basis functions, aug-cc-pVQZ ) 
– 19 hours with 1024 processors  

• Example target system for petaflop
– W3O9

- which has 678 basis functions with the aug-cc-pVTZ/ECP(W) basis set 
and close to 1400 basis functions with the aug-cc-pVTZ/ECP(W) basis set

– These are single point calculations and geometry optimizations and frequency 
calculations are even more costly yet necessary. 





Multiresolution Adaptive 
Numerical Scientific Simulation 

Ariana Beste1, George I. Fann1, Robert J. Harrison1,2, 
Rebecca Hartman-Baker1, Shinichiro Sugiki1

1Oak Ridge National Laboratory
2University of Tennessee, Knoxville

In collaboration with 

Gregory Beylkin4, Fernando Perez4, Lucas Monzon4, 
Martin Mohlenkamp5 and others

4University of Colorado
5Ohio University

harrisonrj@ornl.gov



Multiresolution chemistry objectives

• Complete elimination of the basis error
– One-electron models (e.g., HF, DFT)
– Pair models (e.g., MP2, CCSD, …)

• Correct scaling of cost with system size
• General approach

– Readily accessible by students and researchers
– Higher level of composition 
– Direct computation of chemical energy differences

• New computational approaches 
• Fast algorithms with guaranteed precision



Essential techniques for fast 
computation

• Multiresolution

• Low-separation 
rank

• Low-operator 
rank

   
0 1

0 1 0 1

n

n n n

V V V

V V V V V V      
L

L

( )
1

1 1

( )

2

( , , ) ( ) ( )

1              0

dM
l

d l i i
l i

l
i l

f x x f x O

f

 


 

 

 

K

1

( )

0        . .

r
T

T T

A u v O

v v u u

  


     

 

 


 

  



Please forget about wavelets
• They are not central
• Wavelets are a convenient basis for 

spanning Vn-Vn-1 and understanding its 
properties

• But you don’t actually need to use them
– MADNESS does still compute wavelet 

coefficients, but Beylkin’s new code does not

• Please remember this … 
– Discontinuous spectral element with multi-

resolution and separated representations for 
fast computation with guaranteed precision.





Current applications
• DFT & HF for electrons

– Energies, gradients, excitation energies, non-
linear optical properties, …

– Catalysis, nano-scale chemistry

• MCSCF
– Time evolution of few-electron systems

• 6D prototype
– Exact solution of 2-electron problem without 

use of any special symmetry

• Nuclear structure



High-level composition using 
functions and operators

• Conventional quant. chem. uses explicitly 
indexed sparse arrays of matrix elements
– Complex, tedious and error prone

• Python classes for Function and Operator
– in 1,2,3,6 and general dimensions
– wide range of operations 
Hpsi = -0.5*Delsq*psi+ V*psi
J = Coulomb.apply(rho)

• All with guaranteed speed and precision

21

2
( ) *

( )

| |

H V

J r G

s
ds

r s

  




  








MADNESS parallel runtime

MPI Global Arrays ARMCI GPC/GASNET

MADNESS math and numerics

MADNESS applications – chemistry, physics, nuclear, ...

MADNESS architecture



Runtime Objectives
• Scalability to 1+M processors ASAP
• Runtime responsible for 

• scheduling and placement, 
• managing data dependencies, 
• hiding latency, and
• Medium to coarse grain concurrency

• Compatible with existing models
• MPI, Global Arrays

• Borrow successful concepts from Cilk, 
Charm++, Python

• Anticipating next gen. languages



Key elements
• Futures for hiding latency and 

automating dependency management

• Global names and name spaces

• Non-process centric computing
– One-sided messaging between objects
– Retain place=process for MPI legacy

• Dynamic load balancing



Futures
• Result of an 

asynchronous 
computation
– Cilk, Java, HPCLs

• Hide latency due to 
communication or 
computation

• Management of 
dependencies
– Via callbacks

int f(int arg);
ProcessId me, p;

Future<int> r0=task(p, f, 0);
Future<int> r1=task(me, f, r0);

// Work until need result

cout << r0 << r1 << endl;

Process “me” spawns a new task in process “p”
to execute f(0) with the result eventually returned
as the value of future r0.  This is used as the argument
of a second task whose execution is deferred until 
its argument is assigned.  Tasks and futures can 
register multiple local or remote callbacks to 
express complex  and dynamic dependencies.



Global Names

• Objects with global names 
with different state in 
each process
– C.f. shared[threads] 

in UPC; co-Array

• Non-collective 
constructor; 
deferred destructor
– Eliminates synchronization

class A : public WorldObject<A>{
int f(int);

};
ProcessID p;
A a;
Future<int> a.task(p,&A::f,0);

A task is sent to the instance of a in process p.
If this has not yet been constructed the message
is stored in a pending queue.  Destruction of a
global object is deferred until the next user 
synchronization point.



Global Namespaces
• Specialize global names to 

containers
– Hash table done
– Arrays, etc., planned  

• Replace global pointer 
(process+local pointer) with 
more powerful concept

• User definable map from 
keys to “owner” process

class Index;  // Hashable
class Value {

double f(int);
};

WorldContainer<Index,Value> c;
Index i,j;  Value v;
c.insert(i,v);
Future<double> = 

c.task(j,&Value::f,666);

Namespaces are a large part of the elegance of Python and success of Charm++ (chares+arrays)

A container is created mapping indices 
to values.

A value is inserted into the container.

A task is spawned in the process owning 
key j to invoke c[j].f(666).



Abstraction Overheads
• If you are careful you win

– Increased performance and productivity
– This is the lesson of Global Arrays, Charm++, … 

• Creating, executing, reaping a local, null task – 350us 
(100K tasks, 3GHz Core2, Pathscale 3.0, -Ofast) 
dominated by new/delete

• Chain of 100K dependent tasks with the result of a task 
as the unevaluated argument of the previous task 
– ~1 us per task 

• Creating a remote task adds overhead of inter-process 
communication which is on the scale of 3us (Cray XT).  
– Aggregation can reduce this. 

• Switching between user-space threads <20ns



Work in progress

• Multiple kernel threads for multi-core
• Full integration of Global Arrays
• Port to GPC and/or GASNET
• Interfaces to external solvers
• Dynamic load balance via work stealing
• Planned

– Multiple user threads per kernel thread to reduce 
need for manual closures

– Near-optimal global scheduling via DAG
– Interfaces from C++ to Python and Octave


