

Optical Provocations

Kim Roberts

BUSINESS MADE SIMPLE

Taxonomy of an Optical Network

- Fibers, amplifiers, wavelength selective switches
- >Modem
 - Communicates a stream of bits
- >Control
- >Electrical layers 1, 2, etc that use the optical connections
 - Aggregation, interfaces, regeneration, switching, etc

Taxonomy of an Optical Network

>Optical path

• Fibers, amplifiers, wavelength selective switches

>Modem

Communicates a stream of bits

>Control

- >Electrical layers 1, 2, etc that use the optical connections
 - Aggregation, interfaces, regeneration, switching, etc

Outline

- >Wavelength Selective Switch; Today
- > Barriers to Transmission
- >Modems; Today
- > Modems; Future
- > Optical Switch; Future
- > Speculations on 2010 to 2020
- > Research Topics

Wavelength Selective Switch Today

Wavelength Selective Switch

Physical Barriers to High Capacity Transmission

Conventional 40G TDM impacted severely by 50GHz filter concatenation

Transmitted Signal

Signal after Dispersion

Polarization Mode Dispersion (PMD)

Noise

10 to 40 to 100 G Symbols per second

- > <u>bit interval</u> reduces $100 \rightarrow 25 \rightarrow 10$ ps
- > electrical <u>bandwidth</u> increases $10 \rightarrow 40 \rightarrow 100$ GHz
- > optical <u>spectrum</u> spreads $0.1 \rightarrow 0.8 \rightarrow 2$ nm (RZ)
- > tolerance to <u>dispersion</u> divided by $1 \rightarrow 16 \rightarrow 100$
- > tolerance to <u>PMD</u> divided by $1 \rightarrow 4 \rightarrow 10$
- > rise-times sharpen, causing optical <u>nonlinearities</u>
- > 6 dB loss in <u>noise</u> margin = $\frac{1}{4}$ of the reach at 40G
- > 10 dB loss in <u>noise</u> margin = 1/10 of the reach at 100G

Modems

Dual Polarization

Vertical Polarization

~ **Horizontal Polarization**

50 **Dual Polarization**

Linear and nonlinear post-compensation of 40 Gb/s ±80,000 ps/nm, 25 ps mean PMD, 2 dB mean PDL

Coherent 100G

- Two subcarriers 20 GHz apart
- 50 GHz channel spacing provides 9 Tb/s in C-band
- 1000 km reach, +/- 50,000 ps/nm, 20 ps mean DGD
- 12 Wavelength Selective Switch (WSS) ROADMs

100G OFDM

40,100 G Evolutions

>Evolutionary improvements in the usual way:

- Smaller
- Less Heat
- Lower Cost
- Greater Performance

Then What?

200G, 400G, 1000G

>Lower cost per bit

>More bits per fiber

>Larger packet streams

(From here on are my personal speculations and not product delivery commitments.)

The bit rate is the product of these three dimensions

More Symbols per Second

>Faster A/D

>More gates of DSP

>CMOS riding Moore's Law

• Bipolar is too hot and does not have the gate count

Multiple Carriers

>Coherent Frequency Selection
>OFDM
>New ideas

End of Fixed Channelization

>Static 50 GHz grid will not support 1000 Gb/s

 At 4 b/s/Hz need 250GHz of spectrum

>Need Flexible WDM

Flexible Spectrum Selection

Not generally economic by 2020

- > Optical Regenerator
- > Wavelength Converter
- >OTDM
- > Optical Demux
- > Optical Burst Switch
- > Optical Packet Switch
- > Quantum Key Distribution
- > Chaos Encryption
- > Optical Logic
- > Optical CDMA
- > Soliton WDM

2010-2020

>Cheap flexible optical spectrum

>Coherent modems

- As 40G gets cheap and small it moves into the campus
- 100G, 200G, 400G, 1000G, each become cost effective first in long haul, then regional,...
- Complexity kept in CMOS

>Eventually, a new kind of optical device

• I do not presently see any likely candidates

Optical Research Topics

- Lower cost
- Flexibility
- ms switch times, transient suppression, ...
- >Modems
 - Lower cost
 - Higher performance
 - Higher capacity

>New physics that may eventually have some application.

High Speed Challenge

> TCP, et al, assume random errors and congestion

- > Layer 0/1/2 Lightpaths can easily be made error free
 - Random bit error rate, packet loss rate < 10⁻²⁰
- > Redundancy engineered as desired to react to failures
 - 50 ms, seconds, minutes
- > Latency and heat critical for many high speed applications
 - Cannot afford ARQ buffers
- > What is a protocol optimized for this environment?
- > How can this be cleanly layered?

Traditional solution: Dispersion Compensation Modules

- > Coils of 1 to 20 km of special fiber
- > 5 μ s to 100 μ s of added delay per coil
- > \$3k to \$10k per module

> Each line amp site needs a specific value of dispersion compensation engineered for a particular end-to-end connection,

Dispersion Tolerance

Dispersion is not precisely determined when designing

a link, and dynamically changes.

Each of these effects are budgeted lower and upper bounds, depending upon fiber type, cable type, geography, and equipment type.

- Fiber temperature variation
- DCM temperature drift
- EDFA dispersion
- Fiber measurement error
- Second order PMD effects
- WDM demux dispersion variation
- Wavelength Selective Switch dispersion variation
- Dispersion specification mismatch error
- Repair reroutes

A typical dispersion spread is \pm 400 ps/nm.

The system must be guaranteed to work everywhere in this range.

Conventional 40G TDM impacted severely by 50GHz filter concatenation

Coherent frequency selection within 50GHz channel

PMD Tracking

