Performance Prediction and Simulation for Exascale Interconnection Networks

Working Group
Sudhakar Yalamanchili (sudha@ece.gatech.edu) and Curt Janssen (cljanss@sandia.gov)
Performance Prediction and Simulation Goals

- Application developers want to understand the performance bottlenecks
 - Parameter studies: processor, network, memory
 - Feedback for application tuning

- DoE/DoD/NSF
 - Procurement decisions based on application performance: execution and power

- System Design Research
 - Industry and academia
Current Status

- No neutral ground
- Tools are largely inaccessible to application developers
 - Even when accessible are not in form that is immediately usable
- Islands of simulation artifacts
- Microarchitecture simulation speeds
 - 1-5KIPs for Intel/AMD and 200 KIPs for Power4
- Simulations now limited in practice to 64-128 cores
- System software cannot support larger systems
 - For example due to BIOS limitations
- Storage system simulations lag processor and interconnect simulation technologies
 - SAN configurations
Challenges

- Cost building a validated useful simulator
 - Composable
 - New methodologies for building simulators
- Accuracy
 - Calibrated models
 - Methodologies for constructing calibrated models
- Performance
 - Parallelism
 - Multiscale
 - Hardware acceleration
- Power and thermal models
- Ease of use
 - Visualization
 - Automation
 - Documentation & deployability
Challenges

- **Impact** is redefined as impacting the efficiency of an Exascale system
- **NRE Costs:**
 - Significantly less than custom hardware or systems
 - Ongoing maintenance and evolution cost across system generations

<table>
<thead>
<tr>
<th>Technical</th>
<th>Probability (Risk)</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building a validated useful simulator</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Composable</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>New methodologies for building simulators</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Accuracy</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Exascale Calibrated models</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Methodologies for constructing Exascale calibrated models</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Performance</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Parallelism</td>
<td>X</td>
<td>(capacity) X</td>
</tr>
<tr>
<td>Multiscale</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hardware acceleration</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Power and thermal models</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ease of use</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Visualization</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Automation</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Documentation & deployability</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Non-Technical Strategic Issues

- Demonstrable value
- Integration with Devices. Memory and Algorithms tracks
- Neutral simulation environment for competing organizations to provide models
 - 80/20 rule applies?
 - Encourage industry involvement through procurement incentives
 - Encourage academic involvement through procurement/publication incentives
- Fund organizations to use the tools