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The Pain of Parallel Programming
• Parallel programming is currently too difficult

To many users programming existing parallel computers is “as 
intimidating and time consuming as  programming in assembly 
language” [NSF Blue-Ribbon Panel on Cyberinfrastructure]. 

• Tribal lore,  DARPA HPCS Development Time study: “Parallel 
algorithms and programming for parallelism is easy. What is 
difficult is the programming/tuning for performance.”

• J. Hennessy: “Many of the early ideas were motivated by 
observations of what was easy to implement in the hardware 
rather than what was easy to use” Reasonable to question 
build-first figure-out-how-to-program-later architectures. 

• Lesson Î parallel programming must be properly resolved. 
Recall the Productivity in HPCS.



Preview 
Aiming at strong speed-ups for single-task 

completion time, conceive an easy-to-program 
architecture opportunity.

• Derive ICN “draft specs” (#terminals, bandwidth, 
latency). 

• Suggest “draft specs” for enabling technologies 
to make architecture possible. 

• 2013: have enabling technologies (free space 
optics, plasmonics, waveguides, etc), mixed 
timing “ligaments” (asynch grant & work with S. 
Nowick, Columbia), do their magic.

• Build architecture.
“Moon shot of HPC”

But, where to start?
By extrapolation (from an UMA approach)



Easy-to-program 64-processor FPGA 
prototype (and 90nm tape-out)

• XMT: Explicit multi-threading. Goal: 1000 thread 
control units (processors) on-chip, multi GHz clock.

• Easy to build. Single grad student. No design 
experience. 2+ years from simulator to FPGA.

• Programmed so far by 35 HS students (23 taught by 
self taught teacher). Some did 5 grad course prog
assignments.  

• Plans with K12 Math Ed Profs, CS Ed Prof, and HS 
curriculum dev experts, inc. Middle School. 

• Taught to non-CS Freshmen@UMD. 
• Contrast with “Need PhD in CS to program current 

multi-cores” AMD (C. Moore)/Intel.



Parallel Random-Access Machine/Model (PRAM)
Serial RAM Step: 1 op (memory/etc). 
PRAM Step: many ops. 

Serial doctrine                                                 Natural (parallel) algorithm

time = #ops                                            time << #ops 

1979- : THEORY figure out how to think algorithmically in parallel
“In theory there is no difference between theory and practice but

in practice there is”Î
1997- : PRAM-On-Chip@UMD: derive specs for (XMT) 

architecture; design and build
Preview (cont’d) use XMT as yardstick for 2018 roadmap 

What could I do in parallel 
at each step assuming 
unlimited hardware

Î
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The PRAM Rollercoaster ride 

Late 1970’s Theory work began
UP Won         the battle of ideas on parallel algorithmic thinking. 

No silver or bronze!
Model of choice in all theory/algorithms communities. 1988-90: 

Big chapters in standard algorithms textbooks.
DOWN FCRC’93: “PRAM is not feasible”. [‘93+ despair Æ no

good alternative!  Where vendors expect good enough
alternatives to come from in 2008?]; Device changed it all:

UP Highlights: eXplicit-multi-threaded (XMT) FPGA-prototype 
computer (not simulator), SPAA’07,CF’08; 90nm ASIC tape-
outs: int. network, HotI’07, XMT. # on-chip transistors

How come? crash “course” on parallel computing
How much processors-to-memories bandwidth?
Enough: Ideal Programming Model (PRAM)
Limited: Programming difficulties



How does it work
“Work-depth” Algs Methodology (source SV82) State all ops you can do in 

parallel. Repeat. Minimize: Total #operations, #rounds The rest is skill. 
• Program single-program multiple-data (SPMD). Short (not OS) threads. 

Independence of order semantics (IOS). XMTC: C plus 3 commands: 
Spawn+Join, Prefix-Sum Unique First parallelism. Then decomposition

Programming methodology Algorithms Æ effective programs. 
Extend the SV82 Work-Depth framework from PRAM to XMTC

Or Established APIs (VHDL/Verilog, OpenGL, MATLAB) “win-win proposition”
Æ Compiler  minimize length of sequence of round-trips to memory; take 

advantage of architecture enhancements (e.g., prefetch). [ideally: given 
XMTC program, compiler provides decomposition: “teach the compiler”]

Architecture Dynamically load-balance concurrent threads over processors. 
“OS of the language”. (Prefix-sum to registers & to memory. )



Discussion
• Program for parallelism. Must realize tension with locality. Ride 

a bike with feet on the ground. Programming for locality has 
limited HPC. Counter intuitive to some architects:

Story time (applicable to on-chip parallelism & on-chip caches) 
Several current courses. Each has a text. The library has 1 
copy. Should the copies be: (i) reserved at the library, (ii) 
reserved at a small library where the department is, or (iii) allow 
borrowing and then satisfy requests when needed

• The PRAM “level of cognition (LOG)”: lowest common 
denominator (LCD) among parallel approaches => PRAM LOG 
necessary condition, regardless who eventually wins the 
ongoing battle on programming model(s) for future multi-cores.

• Current standard practice produces 22-year (CSE graduate) 
dinosaurs; going to 50-year career, dominated by parallelism, 
have only learned to program serial machines. LCD argument 
Î teach PRAM & PRAM-like programming.

• 10th graders succeed as 12th graders; Non-major Freshmen 
succeed as Senior majors. Less bad habits to undo.

• Makes possible: same model as for commodity systems
• Believe that MPI can be supported.
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Read latencies in XMT S and XMT P
8 kernel benchmarks are tested in 4 different size of XMT S and XMT P. 
(8,16,32,64-cluseter)

150+SCallOff-chip memory
363364
322932
282516
24218Shared cache (SC)2 (miss in RO 

buffer or local cache)

44allRO buffer or local cache1

11AllPrefetch buffer

XMT 
P

XMT 
S

# of 
cluster

Read from

1 Since RO buffer o local cache is shared by 16 TCUs in a cluster, arbitration and 
result delivery takes 1 cycle each.

2.Assumed there is no contention in the interconnection network and shared cache 
module. XMT S needs extra 3 cycles for directory access and additional FIFOs.



Kernel benchmarks

2.1M nodes 16K 
keys

Binary search treeBST

Image:200x200
Filter: 16x16

convolutionconv

2MArray compactioncomp
3MArray summationadd

V=50K,E=600KFinding longest path in a 
directed acyclic graph

DAG
V=100K,E=1MBreadth first searchBFS
100KQuick sortqsort
128x128Matrix multiplicationmmul
Input sizeBrief descriptionApp.



Speedups of the benchmarks over 
the eight cluster XMT S

Average speedups of XMT S over XMT P (same number of clusters)

0.6921.9831.0091.1031.0630.9951.6822.039average

BSTDAGBFSconvcompaddqsortmmul



Traffic in IN and Average Latency



Possible ICN draft specs for 250K 
processors in 8K clusters (32/cluster)

• Sufficient bandwidth?
• Can you achieve 60 clocks latency?
☺Mental poker: x250K processors, x8K cluster, 

60+3log2x clocks latency
Optoelectronic folks Can you provide that?

Discussion
Can send bit across/beyond the globe; why not nearby? 
Seek to share NRE. E.g., have NIH fund beyond HW as 

platform for drug design. Bipartisan support. 
Other approaches only sound-risk averse by relating to 

current multi-core; however, future multi-core will have 
to change for: Programmability & scalability.



Please stay tuned
• Will release shortly XMTC compiler + XMT 

architecture simulator 

Some more references
SPIE’04&07 papers: Waveguides & Plasmonics
(w. I. Smolyaninov & C. Davis)  
July 16, 2008 happy day at UMD:
Synchronous mesh of tree defense: A.O. Balkan 

(ASAP06, HotI07,DAC08)
Asynch (incl. mixed timing) defense: M.N. Horak + new 

DA NSF grant. Both with S. Nowick
www.umiacs.umd.edu/users/vishkin/XMT



Some comments on power

• Cache coherence: great way to melt your 
chip

• GALS design (in part due to IOS)
• Asynch: very promising on low power
• Hashing at end points reduces load on 

ICN 



Some pros and cons of private caches
Pros

¾Better performance for coarse-grained programs

¾Short latency for local cache hit

¾Hardware-supported cache coherence protocol

Cons

¾Hardware-supported cache coherence protocol (power)

¾Complicated hardware, limited scalability

¾Inefficient for certain types of memory access pattern, like false 
sharing



Some pros and cons of shared caches
Pros

¾Simple hardware, good scalability.

¾Efficient use of silicon. (No multiple copies)

¾Fine-grained parallelism.

¾Easy-to-program. (Locality is less important) 

Cons

¾Long cache access latency


