
Disruptive Long-term (~2018) R&D Goal:
Easy-to-program many-processor

supercomputer

Uzi Vishkin
University of Maryland

www.umiacs.umd.edu/users/vishkin/XMT

The Pain of Parallel Programming
• Parallel programming is currently too difficult

To many users programming existing parallel computers is “as
intimidating and time consuming as programming in assembly
language” [NSF Blue-Ribbon Panel on Cyberinfrastructure].

• Tribal lore, DARPA HPCS Development Time study: “Parallel
algorithms and programming for parallelism is easy. What is
difficult is the programming/tuning for performance.”

• J. Hennessy: “Many of the early ideas were motivated by
observations of what was easy to implement in the hardware
rather than what was easy to use” Reasonable to question
build-first figure-out-how-to-program-later architectures.

• Lesson Î parallel programming must be properly resolved.
Recall the Productivity in HPCS.

Preview
Aiming at strong speed-ups for single-task

completion time, conceive an easy-to-program
architecture opportunity.

• Derive ICN “draft specs” (#terminals, bandwidth,
latency).

• Suggest “draft specs” for enabling technologies
to make architecture possible.

• 2013: have enabling technologies (free space
optics, plasmonics, waveguides, etc), mixed
timing “ligaments” (asynch grant & work with S.
Nowick, Columbia), do their magic.

• Build architecture.
“Moon shot of HPC”

But, where to start?
By extrapolation (from an UMA approach)

Easy-to-program 64-processor FPGA
prototype (and 90nm tape-out)

• XMT: Explicit multi-threading. Goal: 1000 thread
control units (processors) on-chip, multi GHz clock.

• Easy to build. Single grad student. No design
experience. 2+ years from simulator to FPGA.

• Programmed so far by 35 HS students (23 taught by
self taught teacher). Some did 5 grad course prog
assignments.

• Plans with K12 Math Ed Profs, CS Ed Prof, and HS
curriculum dev experts, inc. Middle School.

• Taught to non-CS Freshmen@UMD.
• Contrast with “Need PhD in CS to program current

multi-cores” AMD (C. Moore)/Intel.

Parallel Random-Access Machine/Model (PRAM)
Serial RAM Step: 1 op (memory/etc).
PRAM Step: many ops.

Serial doctrine Natural (parallel) algorithm

time = #ops time << #ops

1979- : THEORY figure out how to think algorithmically in parallel
“In theory there is no difference between theory and practice but

in practice there is”Î
1997- : PRAM-On-Chip@UMD: derive specs for (XMT)

architecture; design and build
Preview (cont’d) use XMT as yardstick for 2018 roadmap

What could I do in parallel
at each step assuming
unlimited hardware

Î

#
ops

.. ..

..
.. ..

.. ..

#
ops

time time

The PRAM Rollercoaster ride

Late 1970’s Theory work began
UP Won the battle of ideas on parallel algorithmic thinking.

No silver or bronze!
Model of choice in all theory/algorithms communities. 1988-90:

Big chapters in standard algorithms textbooks.
DOWN FCRC’93: “PRAM is not feasible”. [‘93+ despair Æ no

good alternative! Where vendors expect good enough
alternatives to come from in 2008?]; Device changed it all:

UP Highlights: eXplicit-multi-threaded (XMT) FPGA-prototype
computer (not simulator), SPAA’07,CF’08; 90nm ASIC tape-
outs: int. network, HotI’07, XMT. # on-chip transistors

How come? crash “course” on parallel computing
How much processors-to-memories bandwidth?
Enough: Ideal Programming Model (PRAM)
Limited: Programming difficulties

How does it work
“Work-depth” Algs Methodology (source SV82) State all ops you can do in

parallel. Repeat. Minimize: Total #operations, #rounds The rest is skill.
• Program single-program multiple-data (SPMD). Short (not OS) threads.

Independence of order semantics (IOS). XMTC: C plus 3 commands:
Spawn+Join, Prefix-Sum Unique First parallelism. Then decomposition

Programming methodology Algorithms Æ effective programs.
Extend the SV82 Work-Depth framework from PRAM to XMTC

Or Established APIs (VHDL/Verilog, OpenGL, MATLAB) “win-win proposition”
Æ Compiler minimize length of sequence of round-trips to memory; take

advantage of architecture enhancements (e.g., prefetch). [ideally: given
XMTC program, compiler provides decomposition: “teach the compiler”]

Architecture Dynamically load-balance concurrent threads over processors.
“OS of the language”. (Prefix-sum to registers & to memory.)

Discussion
• Program for parallelism. Must realize tension with locality. Ride

a bike with feet on the ground. Programming for locality has
limited HPC. Counter intuitive to some architects:

Story time (applicable to on-chip parallelism & on-chip caches)
Several current courses. Each has a text. The library has 1
copy. Should the copies be: (i) reserved at the library, (ii)
reserved at a small library where the department is, or (iii) allow
borrowing and then satisfy requests when needed

• The PRAM “level of cognition (LOG)”: lowest common
denominator (LCD) among parallel approaches => PRAM LOG
necessary condition, regardless who eventually wins the
ongoing battle on programming model(s) for future multi-cores.

• Current standard practice produces 22-year (CSE graduate)
dinosaurs; going to 50-year career, dominated by parallelism,
have only learned to program serial machines. LCD argument
Î teach PRAM & PRAM-like programming.

• 10th graders succeed as 12th graders; Non-major Freshmen
succeed as Senior majors. Less bad habits to undo.

• Makes possible: same model as for commodity systems
• Believe that MPI can be supported.

...

......

ICN

cluster TCU15...

read-only-buffer

shared cache 0

(a) read-only-buffer, no cache
coherence mechanism

shared cache 0

dir

(b) local cache, directory based
cache coherence system

TCU0

ICN
...

cluster TCU15...

local cache

TCU0

8 word1 wordGranuality
2-wayDirect mapAssociativity
2 cycles2 cyclesLatency
32KB8KBSize
YesNoCoherence

Private cache in
XMT P

Read-only buffer in
XMT S

Comparison between XMT S and XMT P

Read latencies in XMT S and XMT P
8 kernel benchmarks are tested in 4 different size of XMT S and XMT P.
(8,16,32,64-cluseter)

150+SCallOff-chip memory
363364
322932
282516
24218Shared cache (SC)2 (miss in RO

buffer or local cache)

44allRO buffer or local cache1

11AllPrefetch buffer

XMT
P

XMT
S

of
cluster

Read from

1 Since RO buffer o local cache is shared by 16 TCUs in a cluster, arbitration and
result delivery takes 1 cycle each.

2.Assumed there is no contention in the interconnection network and shared cache
module. XMT S needs extra 3 cycles for directory access and additional FIFOs.

Kernel benchmarks

2.1M nodes 16K
keys

Binary search treeBST

Image:200x200
Filter: 16x16

convolutionconv

2MArray compactioncomp
3MArray summationadd

V=50K,E=600KFinding longest path in a
directed acyclic graph

DAG
V=100K,E=1MBreadth first searchBFS
100KQuick sortqsort
128x128Matrix multiplicationmmul
Input sizeBrief descriptionApp.

Speedups of the benchmarks over
the eight cluster XMT S

Average speedups of XMT S over XMT P (same number of clusters)

0.6921.9831.0091.1031.0630.9951.6822.039average

BSTDAGBFSconvcompaddqsortmmul

Traffic in IN and Average Latency

Possible ICN draft specs for 250K
processors in 8K clusters (32/cluster)

• Sufficient bandwidth?
• Can you achieve 60 clocks latency?
☺Mental poker: x250K processors, x8K cluster,

60+3log2x clocks latency
Optoelectronic folks Can you provide that?

Discussion
Can send bit across/beyond the globe; why not nearby?
Seek to share NRE. E.g., have NIH fund beyond HW as

platform for drug design. Bipartisan support.
Other approaches only sound-risk averse by relating to

current multi-core; however, future multi-core will have
to change for: Programmability & scalability.

Please stay tuned
• Will release shortly XMTC compiler + XMT

architecture simulator

Some more references
SPIE’04&07 papers: Waveguides & Plasmonics
(w. I. Smolyaninov & C. Davis)
July 16, 2008 happy day at UMD:
Synchronous mesh of tree defense: A.O. Balkan

(ASAP06, HotI07,DAC08)
Asynch (incl. mixed timing) defense: M.N. Horak + new

DA NSF grant. Both with S. Nowick
www.umiacs.umd.edu/users/vishkin/XMT

Some comments on power

• Cache coherence: great way to melt your
chip

• GALS design (in part due to IOS)
• Asynch: very promising on low power
• Hashing at end points reduces load on

ICN

Some pros and cons of private caches
Pros

¾Better performance for coarse-grained programs

¾Short latency for local cache hit

¾Hardware-supported cache coherence protocol

Cons

¾Hardware-supported cache coherence protocol (power)

¾Complicated hardware, limited scalability

¾Inefficient for certain types of memory access pattern, like false
sharing

Some pros and cons of shared caches
Pros

¾Simple hardware, good scalability.

¾Efficient use of silicon. (No multiple copies)

¾Fine-grained parallelism.

¾Easy-to-program. (Locality is less important)

Cons

¾Long cache access latency

