
Application Requirements
for Interconnects

IAA Interconnects Workshop
San Jose, California

July 21-22, 2008

Questions
(How do we determine appropriate interconnect requirements?)

• Topology: will the apps inform us what kind of topology to use?
– Crossbars: Not scalable
– Fat-Trees: Cost scales superlinearly with number of processors
– Lower Degree Interconnects: (n-Dim Mesh, Torus, Hypercube, Cayley)

• Costs scale linearly with number of processors
• Problems with application mapping/scheduling fault tolerance

• Bandwidth/Latency/Overhead
– Which is most important? (trick question: they are intimately

connected)
– Requirements for a “balanced” machine? (eg. performance is not

dominated by communication costs)

• Collectives
– How important/what type?
– Do they deserve a dedicated interconnect?
– Should we put floating point hardware into the NIC?

IPM (the “hammer”)
Integrated
Performance
Monitoring

• portable, lightweight,
scalable profiling

• fast hash method
• profiles MPI topology
• profiles code regions
• open source

MPI_Pcontrol(1,”W”);
…code…

MPI_Pcontrol(-1,”W”);

###
IPMv0.7 :: csnode041 256 tasks ES/ESOS
madbench.x (completed) 10/27/04/14:45:56
#
<mpi><user><wall> (sec)
171.67 352.16 393.80
…
###
W
<mpi><user><wall> (sec)
36.40 198.00 198.36
#
call [time] %mpi %wall
MPI_Reduce 2.395e+01 65.8 6.1
MPI_Recv 9.625e+00 26.4 2.4
MPI_Send 2.708e+00 7.4 0.7
MPI_Testall 7.310e-02 0.2 0.0
MPI_Isend 2.597e-02 0.1 0.0
###
…

Developed by David Skinner, NERSC

Application Overview (the “nails”)

NAME Discipline Problem/Method Structure

MADCAP Cosmology CMB Analysis Dense Matrix

FVCAM Climate Modeling AGCM 3D Grid

CACTUS Astrophysics General Relativity 3D Grid

LBMHD Plasma Physics MHD 2D/3D Lattice

GTC Magnetic Fusion Vlasov-Poisson Particle in Cell

PARATEC Material Science DFT Fourier/Grid

SuperLU Multi-Discipline LU Factorization Sparse Matrix

PMEMD Life Sciences Molecular Dynamics Particle

Latency Bound vs. Bandwidth Bound?
• How large does a message have to be in order to

saturate a dedicated circuit on the interconnect?
– N1/2 from the early days of vector computing
– Bandwidth Delay Product in TCP

System Technology MPI Latency
Peak
Bandwidth

Bandwidth
Delay Product

SGI Altix Numalink-4 1.1us 1.9GB/s 2KB
Cray X1 Cray Custom 7.3us 6.3GB/s 46KB

NEC ES NEC Custom 5.6us 1.5GB/s 8.4KB
Myrinet Cluster Myrinet 2000 5.7us 500MB/s 2.8KB
Infiniband x86 IB4x 1.7us 2GB/s 3.4KB

• Bandwidth Bound if msg size > Bandwidth*Delay
• Latency Bound if msg size < Bandwidth*Delay

– Except if pipelined (unlikely with MPI due to overhead)
– Cannot pipeline MPI collectives (but can in Titanium)

Diagram of Message Size
Distribution Function

Message Size Distributions

P2P Buffer Sizes

Collective Buffer Sizes

95% Latency Bound!!!

Interconnect Design Considerations
for Message Passing Applications

• Application studies provide insight to
requirements for Interconnects (both
on-chip and off-chip)
– On-chip interconnect is 2D planar

(crossbar won’t scale!)
– Sparse connectivity for most apps.;

crossbar is overkill
– No single best topology
– Most point-to-point message exhibit

sparse topology + often bandwidth
bound

– Collectives tiny and primarily latency
bound

• Ultimately, need to be aware of the on-
chip interconnect topology in addition
to the off-chip topology

– Adaptive topology interconnects (HFAST)
– Intelligent task migration?

9

Bisection Bandwidth

• 3D FFT easy-to-identify as
needing high bisection
– Each processor must send

messages to all PE’s! (all-to-all) for
1D decomposition

– However, most implementations are
currently limited by overhead of
sending small messages!

– 2D domain decomposition (required
for high concurrency) actually
requires sqrt(N) communicating
partners! (some-to-some)

– The issue is OVERHEAD (more of a
limit than latency)

• Same Deal for AMR
– AMR communication is sparse, but

limited by message overhead

10

The Future of
HPC System Concurrency

Must ride exponential wave of increasing concurrency for forseeable future!
Fortunately, most of the concurrency growth
is within a single socket 11

Strong-Scaling Drives Change in
Algorithm Requirements

• Parallel computing has thrived on weak-scaling for
past 15 years

• Flat CPU performance increases emphasis on
strong-scaling

• Focus on Strong Scaling will dramatically change
interconnect requirements in the future!
– Concurrency: Will double every 18 months
– Implicit Methods: Improve time-to-solution
– Multiscale/AMR methods: Only apply computation where it is

required (both temporal and spatial refinement).
– Efficient Lightweight Messaging: All of these trends will push

point-to-point messaging towards smaller message sizes.

12

• 1.5 orders: increased processor speed and efficiency
• 1.5 orders: increased concurrency
• 1 order: higher-order discretizations

– Same accuracy can be achieved with many fewer elements

• 1 order: flux-surface following gridding
– Less resolution required along than across field lines

• 4 orders: adaptive gridding
– Zones requiring refinement are <1% of ITER volume and

resolution requirements away from them are ~102 less severe

• 3 orders: implicit solvers
– Mode growth time 9 orders longer than Alfven-limited CFL

Where to Find 12 Orders in 10 years?
Jardin& Keyes
H
ar
dw

ar
e:
 3

So
ft
w
ar
e:
 9

13

Shape of things to come: MAESTRO

• Authors: S. Woosley, SciDAC2 APDEC Center (SEESAR)
• Science:
– Model convection leading up to Type 1a supernova explosion;
– Method also applicable to 3-D turbulent combustion studies.
• Algorithm: Structured rectangular grid plus patch-based AMR

(although NERSC-6 code does not adapt);
– hydro model has implicit & explicit components;
• Coding: ~ 100,000 lines Fortran 90/77.
• Parallelism: 3-D processor non-overlapping decomposition, MPI.
– Knapsack algorithm for load distribution; move boxes close in physical

space to same/close processor.
– Expresses AMR communication characteristics (BoxLib)
– Also models requirements for PDE solvers using implicit timestepping

schemes (Newton-Krylov methods)

14

MAESTRO Scaling
MAESTRO White Dwarf Convection

Weak Scaling 16 32^3 Boxes per Processor

Explicit parts of the code scale very well but implicit
parts of code pose more challenges to systems

due to global communications15

Maestro Communication Patterns

MPI Calls by Count MPI Calls by Time

MAESTRO White Dwarf Convection
512 Processors 512x512X1024 Grid from Cray_Pat on Franklin

16

Maestro Communication Topology

512 procs, 16 32^32 boxes per processor - grid size 512x512x1024 - by amount
of data sent

• Communication
pattern based on
Boxlib grid

• Boxlib works for both
adaptive and uniform
meshes

• Boxes distributed to
be load balanced
across processors

• Next, box location
optimized for locality

• Result is a clumping
effect

17

Maestro Communication Topology

512 procs, 16 32^32 boxes per processor - grid size 512x512x1024 - by amount
of time

• Examining
communication
topology by time
shows cost of
short messages
close to that of
long messages

18

Maestro Message Sizes

512 procs, 16 32^32 boxes per processor - grid size 512x512x1024

19

Message Buffer Size Distribution by Time

Strong-Scaling Drives Change in
Interconnect Requirements

• Concurrency: Must reduce memory overhead of
identifying peers (eliminate O(N) and O(N^2) growth in
messaging

• Implicit Methods: Need much more efficient collectives
(all-reduce) for Newton Vlasov methods

• Multiscale/AMR methods: Complex message topology
(not bisection limited, but does not map to simple
topologies

• Efficient Lightweight Messaging: All of these trends
will push point-to-point messaging towards smaller
message sizes.

20

Additional Requirements

• For Developers of Performance Tools: Interconnect performance
counters
– Difficult to measure actual time in async messaging when just timing MPI

calls (worse if you use one-sided messaging)
– Need to understand causality (disambiguating counters)
– Directly measure LOG-P parameters (instead of inferring them indirectly)

• For Developers of Advanced Programming Models & Languages
– Need compact addressing of peers (avoid overhead of naming peers for

messaging: hardware should translate peer addresses)
– DMA must understand effective addresses (must be TLB coherent with

processor)
– Need for lower-cost interaction with device interface (lower overhead)

• chatty device protocols have high overhead because device writes must be uncached!
• Overhead is more of a problem than latency per se (can use slack to hide latency)

– Ultimately, it is a huge advantage to have device interfaces and DMA on
same chip as CPUs (SoC)

– Per-CPU limited injection rate (Bane of Hybrid Programming Model)
21

