
Application Requirements 
for Interconnects

IAA Interconnects Workshop
San Jose, California

July 21-22, 2008



Questions
(How do we determine appropriate interconnect requirements?)

• Topology: will the apps inform us what kind of topology to use?
– Crossbars: Not scalable
– Fat-Trees: Cost scales superlinearly with number of processors
– Lower Degree Interconnects: (n-Dim Mesh, Torus, Hypercube, Cayley)

• Costs scale linearly with number of processors
• Problems with application mapping/scheduling fault tolerance

• Bandwidth/Latency/Overhead
– Which is most important? (trick question: they are intimately 

connected)
– Requirements for a “balanced” machine? (eg. performance is not 

dominated by communication costs)

• Collectives
– How important/what type?
– Do they deserve a dedicated interconnect?
– Should we put floating point hardware into the NIC?



IPM (the “hammer”)
Integrated
Performance
Monitoring

• portable, lightweight, 
scalable profiling

• fast hash method  
• profiles MPI topology
• profiles code regions  
• open source

MPI_Pcontrol(1,”W”);
…code…

MPI_Pcontrol(-1,”W”);

###########################################
# IPMv0.7 :: csnode041 256 tasks  ES/ESOS
# madbench.x (completed) 10/27/04/14:45:56
#
#       <mpi><user><wall> (sec)
#      171.67      352.16      393.80      
# …
###############################################
# W
#       <mpi><user><wall> (sec)
#       36.40      198.00      198.36
#
# call            [time]      %mpi   %wall
# MPI_Reduce      2.395e+01   65.8     6.1
# MPI_Recv        9.625e+00   26.4     2.4
# MPI_Send        2.708e+00    7.4     0.7
# MPI_Testall     7.310e-02    0.2     0.0
# MPI_Isend       2.597e-02    0.1     0.0
###############################################
…

Developed by David Skinner, NERSC



Application Overview (the “nails”)

NAME Discipline Problem/Method Structure

MADCAP Cosmology CMB Analysis Dense Matrix

FVCAM Climate Modeling AGCM 3D Grid

CACTUS Astrophysics General Relativity 3D Grid

LBMHD Plasma Physics MHD 2D/3D Lattice

GTC Magnetic Fusion Vlasov-Poisson Particle in Cell

PARATEC Material Science DFT Fourier/Grid

SuperLU Multi-Discipline LU Factorization Sparse Matrix

PMEMD Life Sciences Molecular Dynamics Particle



Latency Bound vs. Bandwidth Bound?
• How large does a message have to be in order to 

saturate a dedicated circuit on the interconnect? 
– N1/2 from the early days of vector computing
– Bandwidth Delay Product in TCP

System Technology MPI Latency
Peak 
Bandwidth

Bandwidth 
Delay Product

SGI Altix Numalink-4 1.1us 1.9GB/s 2KB
Cray X1 Cray Custom 7.3us 6.3GB/s 46KB

NEC ES NEC Custom 5.6us 1.5GB/s 8.4KB
Myrinet Cluster Myrinet 2000 5.7us 500MB/s 2.8KB
Infiniband x86 IB4x 1.7us 2GB/s 3.4KB

• Bandwidth Bound if msg size > Bandwidth*Delay
• Latency Bound if msg size < Bandwidth*Delay

– Except if pipelined (unlikely with MPI due to overhead)
– Cannot pipeline MPI collectives (but can in Titanium)



Diagram of Message Size 
Distribution Function



Message Size Distributions



P2P Buffer Sizes



Collective Buffer Sizes

95% Latency Bound!!!



Interconnect Design Considerations 
for Message Passing Applications

• Application studies provide insight to 
requirements for Interconnects (both 
on-chip and off-chip)
– On-chip interconnect is 2D planar 

(crossbar won’t scale!)
– Sparse connectivity for most apps.; 

crossbar is overkill
– No single best topology
– Most point-to-point message exhibit 

sparse topology + often bandwidth 
bound

– Collectives tiny and primarily latency 
bound

• Ultimately, need to be aware of the on-
chip interconnect topology in addition 
to the off-chip topology

– Adaptive topology interconnects (HFAST)
– Intelligent task migration?
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Bisection Bandwidth

• 3D FFT easy-to-identify as 
needing high bisection
– Each processor must send 

messages to all PE’s! (all-to-all) for 
1D decomposition

– However, most implementations are 
currently limited by overhead of 
sending small messages! 

– 2D domain decomposition (required 
for high concurrency) actually 
requires sqrt(N) communicating 
partners! (some-to-some)

– The issue is OVERHEAD (more of a 
limit than latency)

• Same Deal for AMR
– AMR communication is sparse, but 

limited by message overhead
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The Future of 
HPC System Concurrency

Must ride exponential wave of increasing concurrency for forseeable future!
Fortunately, most of the concurrency growth 
is within a single socket 11



Strong-Scaling Drives Change in 
Algorithm Requirements

• Parallel computing has thrived on weak-scaling for 
past 15 years

• Flat CPU performance increases emphasis on 
strong-scaling

• Focus on Strong Scaling will dramatically change 
interconnect requirements in the future!
– Concurrency: Will double every 18 months
– Implicit Methods: Improve time-to-solution
– Multiscale/AMR methods: Only apply computation where it is 

required (both temporal and spatial refinement).
– Efficient Lightweight Messaging: All of these trends will push 

point-to-point messaging towards smaller message sizes.
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• 1.5 orders: increased processor speed and efficiency
• 1.5 orders: increased concurrency
• 1 order: higher-order discretizations 

– Same accuracy can be achieved with many fewer elements

• 1 order: flux-surface following gridding
– Less resolution required along than across field lines

• 4 orders: adaptive gridding
– Zones requiring refinement are <1% of ITER volume and 

resolution requirements away from them are ~102 less severe

• 3 orders: implicit solvers
– Mode growth time 9 orders longer than Alfven-limited CFL

Where to Find 12 Orders in 10 years?
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Shape of things to come: MAESTRO

• Authors: S. Woosley, SciDAC2 APDEC Center (SEESAR)
• Science:
– Model convection leading up to Type 1a supernova explosion;
– Method also applicable to 3-D turbulent combustion studies.
• Algorithm: Structured rectangular grid plus patch-based AMR 

(although NERSC-6 code does not adapt); 
– hydro model has implicit & explicit components; 
• Coding: ~ 100,000 lines Fortran 90/77.
• Parallelism: 3-D processor non-overlapping decomposition, MPI. 
– Knapsack algorithm for load distribution; move boxes close in physical 

space to same/close processor.
– Expresses AMR communication characteristics (BoxLib)
– Also models requirements for PDE solvers using implicit timestepping 

schemes (Newton-Krylov methods)
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MAESTRO Scaling
MAESTRO White Dwarf Convection

Weak Scaling 16 32^3 Boxes per Processor 

Explicit parts of the code scale very well but implicit 
parts of code pose more challenges to systems 

due to global communications15



Maestro Communication Patterns

MPI Calls by Count MPI Calls by Time

MAESTRO White Dwarf Convection
512 Processors 512x512X1024 Grid from Cray_Pat on Franklin
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Maestro Communication Topology

512 procs, 16 32^32 boxes per processor - grid size 512x512x1024 - by amount 
of data sent

• Communication 
pattern based on 
Boxlib grid

• Boxlib works for both 
adaptive and uniform 
meshes

• Boxes distributed to 
be load balanced 
across processors

• Next, box location 
optimized for locality

• Result is a clumping 
effect
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Maestro Communication Topology

512 procs, 16 32^32 boxes per processor - grid size 512x512x1024 - by amount 
of time

• Examining 
communication 
topology by time 
shows cost of 
short messages 
close to that of 
long messages
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Maestro Message Sizes

512 procs, 16 32^32 boxes per processor - grid size 512x512x1024
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Message Buffer Size Distribution by Time



Strong-Scaling Drives Change in 
Interconnect Requirements

• Concurrency: Must reduce memory overhead of 
identifying peers (eliminate O(N) and O(N^2) growth in 
messaging

• Implicit Methods: Need much more efficient collectives 
(all-reduce) for Newton Vlasov methods

• Multiscale/AMR methods: Complex message topology 
(not bisection limited, but does not map to simple 
topologies

• Efficient Lightweight Messaging: All of these trends 
will push point-to-point messaging towards smaller 
message sizes.
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Additional Requirements

• For Developers of Performance Tools: Interconnect performance 
counters
– Difficult to measure actual time in async messaging when just timing MPI 

calls (worse if you use one-sided messaging)
– Need to understand causality (disambiguating counters)
– Directly measure LOG-P parameters (instead of inferring them indirectly)

• For Developers of Advanced Programming Models & Languages
– Need compact addressing of peers (avoid overhead of naming peers for 

messaging: hardware should translate peer addresses)
– DMA must understand effective addresses (must be TLB coherent with 

processor)
– Need for lower-cost interaction with device interface (lower overhead)

• chatty device protocols have high overhead because device writes must be uncached!
• Overhead is more of a problem than latency per se (can use slack to hide latency)

– Ultimately, it is a huge advantage to have device interfaces and DMA on 
same chip as CPUs (SoC)

– Per-CPU limited injection rate (Bane of Hybrid Programming Model)
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