Application/Algorithm Requirements for Interconnects

Michael A. Heroux Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Projects

Trilinos:

- Large collection of interoperable software libraries.
- Meshing, discretization, load balancing, solvers, parallel data structures.
- 8.0 Release 8/31/2007. 2200 downloads. 7000 since Mar '05. 5000 users.
- Growing external collaborations: ORNL, LBL, INL, Boeing, XOM. ٠
- Trilinos 9.0: Fuller vertical SW stack, fuller support for Windows, Mac, more customers. ٠

TOPS-2:

- DOE Office of Science SciDAC-2 Project.
- Bringing Apps to Petascale via libraries.

Tramonto:

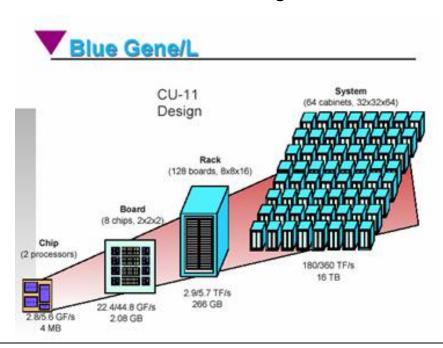
- Fluid Density Functional Theories code.
- Nano-structured fluids, complex fluid structures, e.g., lipid-bilayers.
- Tramonto 2.1: First public Release March 2007. 120 downloads.

Mantevo:

- Mantevo: Five microapps (phdMesh, HPCCG, pHPCCG, Beam, Prolego) + framework. ٠
- HPCCG: Publicly available. Part of Sequoia benchmark. ٠
 - "Closest thing to an unstructured FEM/FVM code in 500 semi-colons or fewer."
 - Ports to nVidia, Clovertown, Sun 8x8 core/threads, RedStorm, Sequoia RFP, ...
 - Rewritten in BEC, Qthreads, OpenMP.
 - 25K core runs on Redstorm.
- pHPPCG: Parametrized HPCCG arbitrary int/float types, data structure base class.
- phdMesh part of Trilinos...Beam exercises vertical stack in Trilinos...Prolego basic research. ٠

About MPI

- MPI will be the primary inter-node programming model.
- Very few people program in MPI: Abstractions.
- Right ingredients:
 - Portable, ubiquitous.
 - Forced alignment of work/data ownership and transfer.
- Matches architectures:
 - Interconnects of best commercial node parts.
- New languages:
 - Big fan of Co-Array Fortran (Have been for 15 years: F--).
 - Chapel looks good.
 - But tough uphill climb.

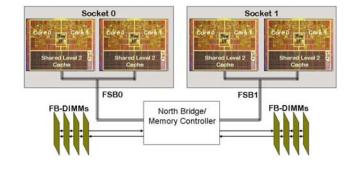

Two Views of the System Network

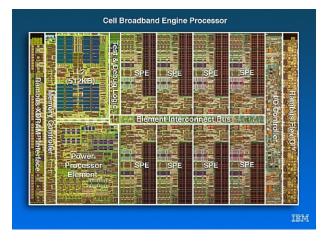
App Developer View

MPI Process

Single core node.

- All other processes equi-distant.
- Simultaneous communication to many processes.


Reality


- Goal: Give app developers illusion they want.
- Problem: Harder and harder to do.
- Current focus: How to program the node?

Node Classification

- Homogeneous multicore:
 - SMP on a chip.
 - NUMA nodes.
 - Varying memory architectures.

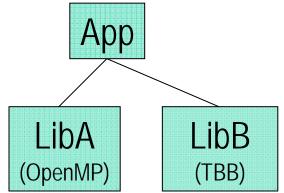
- Heterogeneous multicore:
 - Serial/Controller processor(s).
 - Team of identical, simpler compute processors.
 - Varying memory architectures.

Why Homogeneous vs. Heterogeneous?

- Homogeneous:
 - Out-of-the-box: Can attempt single-level MPI-only.
 - m nodes, n cores per node: p = m*n
 - mpirun -np p ...
- Heterogeneous:
 - Must think of compute cores as "co-processors".
 - mpirun -np m ...
 - Something else on the node.
- Future:
 - Boundary may get fuzzy.
 - Heterogenous techniques can work well on homogeneous nodes.

Programming Models for Scalable Homogeneous Multicore (beyond single-level MPI-only)

Single Core Performance: Still improving for some codes

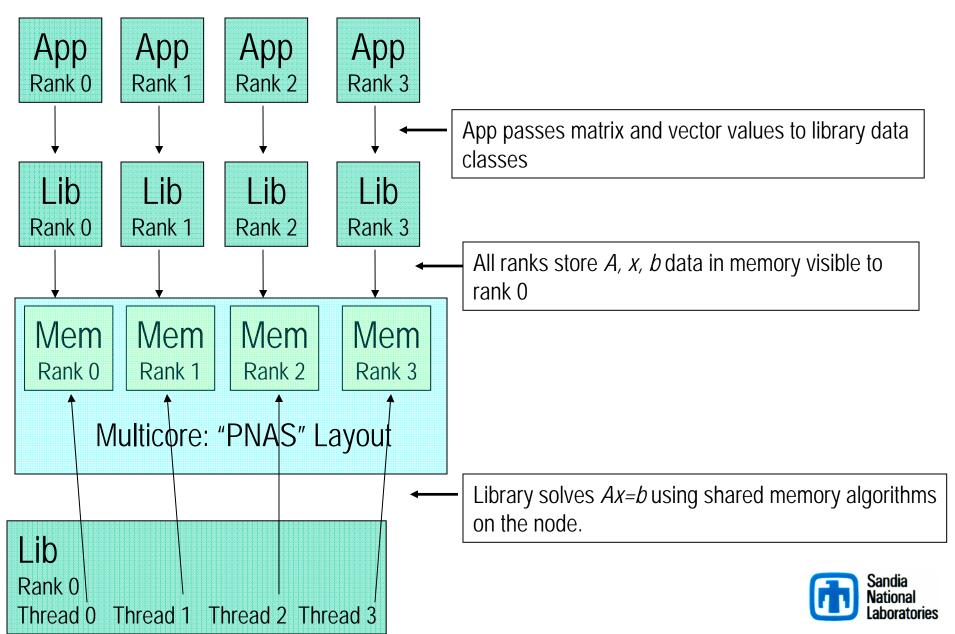

- HPCCG microapp.
- Clock speeds stable:
 ~ 2GHz.
- FP-friendly computations stalled.
- Memory-intensive computations still improving.

Year	Processor	Clock (GHz)	Cores per socket	MFLOPS /sec
2003	AMD Athlon	1.9	1	178
2004	AMD Opteron	1.6	1	282
2005	Intel Pentium M	2.1	1	310
2006	AMD Opteron	2.2	2	359
2007	Intel Woodcrest	1.9	4	401
2007	AMD Opteron	2.1	4	476
2007	Intel Core Duo	2.3	2	508

Threading under MPI

- Default approach: Successful in many applications.
- Concerns:
 - Opaqueness of work/data pair assignment.
 - Lack of granularity control.
 - Collisions: Multiple thread models.
 - Performance issue, not correctness.

- Bright spot: Intel Thread Building Blocks (TBB).
 - Iterator (C++ language feature) model.
 - Opaque or transparent: User choice.


MPI Under MPI

- Scalable multicores:
 - Two different MPI architectures.
 - Machines within a machine.
- Exploited in single-level MPI:
 - Short-circuited messages.
 - Reduce network B/W.
 - Missing some potential.
- Nested algorithms.
- Already possible.

- "Ping-pong"
testLatency
(microsec)Bandwidth
(MB/sec)Inter-node
machine0.711082Intra-node
machine47.5114Intra-node
machine47.5114
- Real attraction: No new node programming model.
- Can even implement shared memory algorithms (with some enhancements to MPI).

MPI-Only + MPI/Threading: *Ax=b*

Heterogeneous Multicore Issues

Excited about multimedia processors

- Inclusion of native double precision.
- Large consumer market.
- Qualitative performance improvement over standard microprocessors...
- If your computation matches the architecture.
- Many of our computations do match well.
- But a long road ahead...

APIs for Heterogeneous Nodes (A Mess)

Processor	API		
NVIDIA	CUDA		
AMD/ATI	Brook+		
STI Cell	ALF		
Intel Larrabee	Ct		
Most/All?	Sequoia		
Most	RapidMind (Proprietary)		
Apple/All	OpenCL		

Commonality: Fine-grain functional programming. Our Response: A Library Node Abstraction Layer

Going Forward: Changing the Atomic Unit

• Now:

Single-level MPI-only OK for many apps.

Future:

Hiding network heterogeneity beneath single MPI level too hard.

- Philosophical approach: Node becomes the new atomic unit.
- Key Requirement: Portable standard node API.
- Hard work:

Changes are ubiquitous (unlike MPI).

Some Algorithm Trends

- Ensembles:
 - Increasing feasibility and importance.
 - UQ, QMU, stability analyses.
 - Tend to increase computation:communication ratio.
- Data-driven algorithms:
 - SPMD unfriendly.
 - Multithreading friendly.

Summary

• Exciting times:

For architecture and software design.

Keep the illusion alive:

Flat, uniform, single core per node.

Multimedia processors:

Right mix for next qualitative performance improvement?

Possible scenario for some apps/libs:

- Heterogeneous API superior on homogeneous nodes.
- Go directly from single-level MPI-only to MPI+heterogenous node?

A common, standard API for multicore:

Most critical need.