Simulating 100M Endpoint Sytems

Derek Chiou

University of Texas at Austin

Electrical and Computer Engineering

Stolen from http://research.microsoft.com/si/PPT/HardwareModelingInfrastructure.pdf

Main Challenges

 High-level simulation challenges haven't fundamentally changed Performance: speeds design cycle

Flexibility: maximizes design scope

Detail: minimizes risk

Flexibility

• SimpleScalar favors performance and flexibility

Advanced Computer Architecture Lab University of Michigan

Detail

Design

Space

Hardware Modeling Infrastructure: The SimpleScalar Experience Todd Austin

Some Challenges for Simulating 100M Endpoints (1)

- Simulation speed
 - Sheer size of target system
 - Hardware and software
 - Real software?
- Accuracy (potentially very accurate model)
 - Ability to calibrate less accurate models
 - The real system is often not available
 - Ability to tune accuracy as more information available, make the simulator faster
 - More than interconnect: Core, memory hierarchy
 - Core + memory needed to study NIC overhead
 - Ensuring accuracy, calibration with real hardware/RTL

Some Challenges for Simulating 100M Endpoints (2)

- Complete
 - Run *real* workloads on real OS
- Flexibility
 - Want to be able to quickly explore
- Speed, accuracy, completeness needed to model interactions
 - Warmup times grow with target system size
 - Want to see instabilities/interactions that are the result of complex interactions after long warmups

A Solution: Hardware Acceleration

• Parallelize the simulator

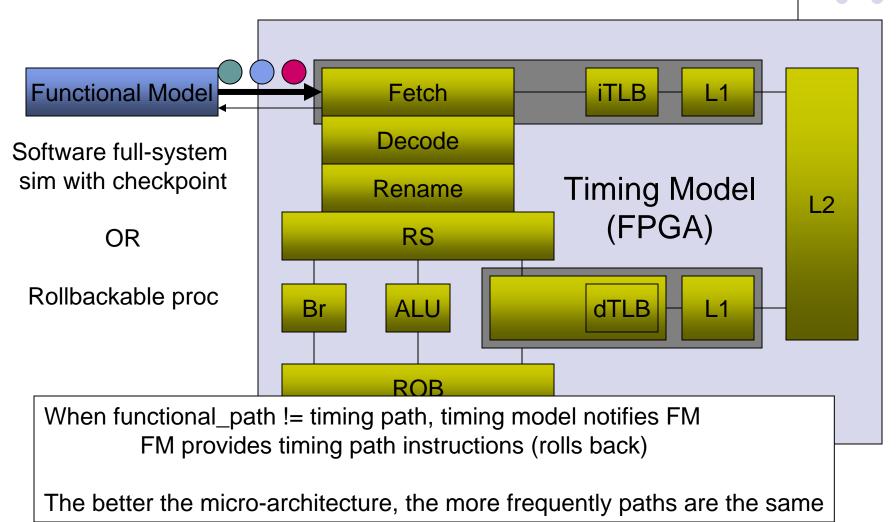
- Software (run on General Purpose MPP)
- Hardware: FPGAs, special purpose ASICs, lots of minicores (MP GPUs, Tilera)

• Need a new simulator architecture

- Parallel host including hardware
- Simulate rather than prototype
 - multiple host cycles for one target cycle
- Hardware to collect and process stats
- Accuracy and flexibility?

Why Hardware (FPGAs)?

- FPGAs run roughly 10 times slower than processor (100MHz/1GHz)
- FPGAs much more parallel than processor
 - > 10 times as many things happening at the same time
- Flexible
- Examples of FPGA-accelerated simulators that run 1000 times faster than pure software
 - Implies a factor of 10K better efficiency
- May be better-than-FPGA architectures for simulation
 - will require huge concurrency


Making Hardware Simulation Tractable: Partitioning

- Reuse partitions to reduce/eliminate hardware overhead and thus increase flexiblity and accuracy
 - RAM->CAM->Cache->Branch Predictor
 - Functional/timing (avoids a lot of issues)
- Permits best host technology for each partition
 - Hybrid software/hardware solutions enabled
- Existing Examples
 - FAST (Sunwoo, Patil, Reinhart, Kim, Johnson, Chiou @ Texas)
 - Functional/timing, timing in FPGA
 - HASim (Emer et al. @ Intel & MIT)
 - RAMP (Berkeley, CMU, Intel, MIT, Stanford, Texas, Washington)
 - Module level (processor/memory/network) partitioning

MICRO 2007

FPGA-Accelerated Simulation Technologies (FAST): Parallelized Simulators

FAST Prototype in Real Time (~1.2MIPS, 1000x Intel/AMD)

Documenti - Microsoft Word File Edit Mew Inset File Edit Inset Inset </th
IE
IF
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
- N
2
- ~
≡ Ga⊡ ∃ 12 Ka Page 1 Sec 1 1/1 At 1* In 1 Col 1 REC TRK EXT OVR Dad
Start Document1 - Microsof

Making Hardware Simulation Tractable: Multithreading Hardware

- Every host cycle a different target entity is simulated
 - Results of one cycle not needed on next cycle
 - Enables pipelining of complex target functionality (much easier)
 - Shares resources
 - One router model can be used to model performance of *n* routers
 - Need state per simulated target entity (DRAM/Disk based)
 - Prefetching easy since it is known what will be done next
 - Supports huge targets
- Existing Examples (CPU)
 - Protoflex (Chung, Hoe @ CMU)
 - Currently simulates 16 cores, full-system at 50+MIPS aggregate
 - RAMP-Gold (Tan, Asanovic @ Berkeley)

Will complexity doom us to build what we can model?

- It often does (build without simulation?)
 - So, let's improve our modeling capabilities
- But, complexities have grown with resources
- Need ability to simulate whatever is practical to build
 - Requires parallelized simulators
 - Simulating large targets is a pleasingly parallel application
 - Can then *buy* additional simulation scale and performance
 - Hardware is a good way to parallelize
- Can simulation effort be reused for implementation?
 - Generate implementation from simulator
 - Eliminates calibration issues