High Performance Computing for Situational Awareness in Power System Grid

Jarek Nieplocha

Daniel Chavarria, Vinod Tipparaju, Henry Huang, Andres Marquez

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Power System Simulation Complexity

U.S. Department of Energy

Situational Awareness in Power Grid Is An Interconnection-Scale Issue

But ... today's grid operations data and software can't support the real-time analysis required for dynamic situational awareness of such large and complex systems Pacific Northwest National L

Power System Dynamic Model

Differential Algebraic Equations

 $\begin{cases} \frac{dx}{dt} = f(x, y) \\ 0 = g(x, y) \end{cases}$

Dynamic models

Power flow model

- X: State Variables
- **y**: Algebraic Variables

WECC Power System

2,700 generators 3rd-order model 8,100 state variables Plus other dynamic models

State Variables: an order of 10⁴

Source: J. Hauer. 2004

Steady-State Model

Power Flow Equation $0 = g(V, \theta, P, Q)$

Breaker-Oriented Model (EMS) WECC Power System

10,000 buses

16,000 lines

2,700 generators

20,000 unknowns in power flow model

40,000 analog measurements

100,000 digital measurements

State Variables:

An order of $10^4~(\text{PF})$ & $10^5~(\text{EMS})$

Does not seem that bad but...

For effective decision support we need to run analysis in seconds!!

Telemetry Data

- High-Level Real-Time View of WECC System
 - 500 kV AC
 - 367 lines
 - 167 buses
 - ~70 PMUs

Data Volume and Rates

- SCADA system: ~4 seconds 6 GB/day
- Phasor system: 1/30 second
 5 GB/day → 3 TB/day

Electricity Infrastructure Operations Center

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Energy Science and Technology Directorate

Blackout of 2003

Source: NOAA/DMSP

Source: Blackout Final Report

> Lack of situational awareness!

> How to improve situational awareness?

Computational Problem

Pacific Northwest National Laboratory U.S. Department of Energy

State Estimation Core of Power System Monitoring and Operations

Weighted Least Square State Estimation

- Nonlinear Optimization Problem
- Maximum Likelihood Weighted Least Squares (WLS) method
- Weighted Least Absolute Value (WLAV)
 - LP problem (Simplex, Karmarkar)
- Our focus is on the WLS method
 - Iterative procedure requires a solution of a large sparse set of linear equations $A\Delta x = b$ obtained through linearization in each iterative step of Newton-Raphson
- The main computational effort is the solver of linear equations – highly irregular sparsity patterns
 - Direct Methods give fast solution on a serial processor but offer limited coarse-grain parallelism
 - Iterative Methods are slower on serial processor but offer higher coarse-grain parallelism

WLS Method

z = h(x) + e

Truncated Taylor series expansion: $z = h(x^*) + H(x^*)\Delta x + e$ $H = \partial h(x)/\partial x \Big|_{x=x^*}$

Min $(z-h(x))^{\dagger}R^{-1}(z-h(x))$

$$x^{k+1} = x^k + A (z-h(x^k))$$

A= [H[†]R⁻¹H]⁻¹H[†]R-1

R – noise covariance matrix

z - measurement vector

- H Jacobian matrix of h
- x state vector (voltage&angle)
- h –nonlinear function

Architectural Considerations

- Characteristic of the problem
 - need for near real-time operation
 - Problem sizes not very big + fine grain computations
 - Irregular communication
- Focus on shared-memory multiprocessor systems rather than on clusters
- SGI Altix with 128 1.5 GHz Itanium-2 CPUs
 - Shared memory programming models
 - Pthreads, OpenMPI, System V shared memory
 - Standard MPI distributed memory programming model
- Cray MTA-2 multithreaded system

Pacific Northwest National Laboratory U.S. Department of Energy

Parallel WLS State Estimation

Critical to accelerate solution of the Weighted Least Square Algorithm

- Solve very large problems >10,000-100,000 bus systems
- Exploit emerging systems with multi-core processors
 - Rely of efficiency of shared memory communication
 - Such systems will be broadly available and affordable to industry
- Solution of Sparse Linear System of Equations is the core computational kernel in the WLS algorithm
- Deployed State-of-the-art Direct Solvers
 - SuperLU is frequently used for solving PDEs
- SGI Altix shared memory system
 - Multithreaded version of SuperLU
 - MPI version slower
 - SGI MPI (shared memory)

# Processors vs. Programming Model	1	2	4
MT-SuperLU	0.209s	0.147s	0.169s
MPI-SuperLU	1.106s	1.102s	1.102s

Ordering Scheme and Speedup

Approximate Minimum Degree Produces Best Speedups !

Ordering Scheme and Time to Solution

Multiple Minimum Degree Is FASTEST BUT Not Much Faster Than Serial Algorithm

Conjugate Gradient in State Estimation

Shared memory version of Conjugate Gradient

- Load balancing in the sparse matrix-vector product
- Experimental evaluation on the SGI Altix shared memory system
- Better performance and scalability compared to SuperLU package (both multithreaded and MPI versions)

Paper at 2006 IEEE PES General Meeting. Montreal, June 2006: Nieplocha J, A Marquez, V Tipparaju, D Chavarría-Miranda, RT Guttromson, and Z Huang. "Towards Efficient Parallel State Estimation Solvers on Shared Memory Computers"

Full State Estimation on Cray MTA-2

- Cray MTA-2 parallel multithreaded architecture
- Parallelization of the full WLS State Estimation Code done based on Cray language directives
- WECC model simplified: ~14000 buses

Challenges in Dynamic State Estimation

- Non-linearity of the model
- Large set of ODEs and Algebraic Equations
- Sparsity
- Real-time operation requirements
- Need solvers effective for the power system area
- Data management for telemetry data
- We are developing Extended Kalman Filter

Added Complexity of Problem Scales

Data Volume/Rate and State Estimation Requirements

SCADA: ~4 seconds → 100 time speedup

6 GB/day

Phasor data: 1/30 second → 10⁴ time speedup
 5 GB/day → 3 TB/day

Problem Size

- Currently contingency analysis: N-1 only = ~20000 cases, BPA runs only 500 select cases every 5 minutes.
- N-2 = ~10⁸; N-3 = ~10¹²; N-4 = ~10¹⁷ \rightarrow a Peta-scale problem

Other Factors

- Weather load, wind power
- Environment

Dozens of components went out of service during 2003 blackout!!!

• ...

It can not be solved with hardware and software currently used. We must explore advanced computing

Outlook into the Future with HPC Power System Computation

Better Models and Simulation

- Model identification/validation/enhancement
- Topology/parameter estimation and identification
- Faster dynamic simulation

Better Monitoring

- Dynamic stability monitoring
- Response adequacy measurement and monitoring
- Power quality monitoring/enhancement

Better Control

- SPS/RAS design and operation
- Reactive power coordination
- Resource adequacy, commitment & scheduling
- Fault/outage management

Questions?

