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Power System Simulation ComplexityPower System Simulation ComplexityPower System Simulation Complexity

Element Components*

Generation ~102

Transmission ~103

Substations ~104

Distribution Feeders ~5 x 104

Customer Meters ~107

Appliances/Equipment ~5 x 108

*Western U.S.

~104

Transmission- 
level Simulation

~104

Distribution- 
level Simulation
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Situational Awareness in Power Grid Is An 
Interconnection-Scale Issue 

Situational Awareness in Power Grid Is An Situational Awareness in Power Grid Is An 
InterconnectionInterconnection--Scale IssueScale Issue

But But …… todaytoday’’s grid operations data and software cans grid operations data and software can’’t support the t support the 
realreal--time analysis required for dynamic situational awareness of time analysis required for dynamic situational awareness of 
such large and complex systemssuch large and complex systems

Western (U.S.) 
Interconnection Eastern (U.S.) 

Interconnection

ERCOT
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Power System Dynamic ModelPower System Dynamic ModelPower System Dynamic Model

Source: J. Hauer. 2004
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x: State Variables
y: Algebraic Variables

Differential Algebraic Equations

WECC Power System
2,700 generators
3rd-order model

8,100 state variables
Plus other dynamic models

State Variables: 
an order of 104 

Power flow model

Dynamic models
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Steady-State ModelSteadySteady--State ModelState Model

( )QPVg ,,,0 θ=
Power Flow Equation

WECC Power System

10,000 buses
16,000 lines
2,700 generators

20,000 unknowns in power flow model
40,000 analog measurements
100,000 digital measurements
State Variables: 

An order of 104 (PF)

 

& 105 (EMS)

Does not seem that bad but…
For effective decision support we 
need to run analysis in seconds!!

Breaker-Oriented Model (EMS)
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Telemetry DataTelemetry DataTelemetry Data

High-Level Real-Time View of 
WECC System

500 kV AC
367 lines
167 buses
~70 PMUs

Data Volume and Rates
SCADA system: ~4 seconds

6 GB/day
Phasor system: 1/30 second

5 GB/day 3 TB/day
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Electricity Infrastructure Operations CenterElectricity Infrastructure Operations Center
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Blackout of 2003Blackout of 2003Blackout of 2003

August 13, 2003
Normal

August 14, 2003
Blackout

Source: NOAA/DMSP

> Lack of situational awareness!

> How to improve situational awareness?

Source: Blackout Final Report
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Computational Problem Computational Problem Computational Problem 

Point-of-departure:  Static State EstimationPointPoint--ofof--departure:  Static State Estimationdeparture:  Static State Estimation

Data 
collection 

cycle

Time
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4 sec 8 sec 2-4 min12 sec

Once the cascade began, the 
2003 blackout swept from 
Ohio to NY in nine seconds!

Resolving state-estimates 

& computing contingency analysis 

takes 2-4 min

Operators 
had no 
way to see 
imminent 
instability!

Data 
point

Resolved 
state 
estimate
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State Estimation 
Core of Power System Monitoring and Operations 

State Estimation State Estimation 
Core of Power System Monitoring and OperationsCore of Power System Monitoring and Operations

Source: L. Jones, AREVA

•Static
•Interval of minutes
•Time-skewed data

State 
Estimator



11

Weighted Least Square State EstimationWeighted Least Square State EstimationWeighted Least Square State Estimation

Nonlinear Optimization Problem
Maximum Likelihood Weighted Least 
Squares (WLS) method
Weighted Least Absolute Value (WLAV)

LP problem (Simplex, Karmarkar)
Our focus is on the WLS method

Iterative procedure requires a solution of a 
large sparse set of linear equations          
AΔx  = b obtained through linearization in 
each iterative step of Newton-Raphson

The main computational effort is the solver 
of linear equations –

 

highly irregular 
sparsity patterns 

Direct Methods give fast solution on a serial 
processor but offer limited coarse-grain 
parallelism
Iterative Methods are slower on serial 
processor but offer higher coarse-grain 
parallelism

z = h(x) +e 

Truncated Taylor series expansion:

z = h(x*) + H(x*)Δx+e
H= ∂h(x)/∂x│x=x*

Min (z-h(x))†R-1(z-h(x))

xk+1

 

= xk

 

+ A (z-h(xk))
A= [H†R-1H]-1H†R-1
R –

 

noise covariance matrix
z –

 

measurement vector
H –

 

Jacobian matrix of h
x –

 

state vector (voltage&angle)
h –nonlinear function

WLS Method



12

Architectural ConsiderationsArchitectural ConsiderationsArchitectural Considerations
Characteristic of  the problem

need for near real-time operation
Problem sizes not very big + fine grain 
computations
Irregular communication

Focus on shared-memory multiprocessor 
systems rather than on clusters 
SGI Altix with 128 1.5 GHz Itanium-2 CPUs

Shared memory programming models
Pthreads, OpenMPI, System V shared memory

Standard MPI distributed memory programming 
model 

Cray MTA-2 multithreaded system
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Parallel WLS State EstimationParallel WLS State EstimationParallel WLS State Estimation

Critical to accelerate solution of the Weighted Least Square Algorithm
Solve very large problems >10,000-100,000 bus systems
Exploit emerging systems with multi-core processors

Rely of efficiency of shared memory communication
Such systems will be broadly available and affordable to industry

Solution of Sparse Linear System of Equations is the core 
computational kernel in the WLS algorithm
Deployed State-of-the-art Direct Solvers 

SuperLU  is frequently used for solving PDEs
SGI Altix shared memory system

Multithreaded version of SuperLU
MPI version slower 

SGI MPI (shared memory)
# Processors vs. 

Programming Model 1 2 4

MT-SuperLU 0.209s 0.147s 0.169s

MPI-SuperLU 1.106s 1.102s 1.102s
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Ordering Scheme and SpeedupOrdering Scheme and SpeedupOrdering Scheme and Speedup
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Ordering Scheme and Time to SolutionOrdering Scheme and Time to SolutionOrdering Scheme and Time to Solution
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Conjugate Gradient in State EstimationConjugate Gradient in State EstimationConjugate Gradient in State Estimation

Shared memory
 

version of Conjugate Gradient 
Load balancing in the sparse matrix-vector product
Experimental evaluation on the SGI Altix shared memory system
Better performance and scalability compared to SuperLU package 
(both multithreaded and MPI versions)
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Paper at 2006 IEEE PES General Meeting. Montreal, 
June 2006: Nieplocha J, A Marquez, V Tipparaju, D 
Chavarría-Miranda, RT Guttromson, and Z 
Huang.

 

"Towards Efficient Parallel State Estimation 
Solvers on Shared Memory Computers”
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Full State Estimation on Cray MTA-2Full State Estimation on Cray MTAFull State Estimation on Cray MTA--22
Cray MTA-2 parallel multithreaded architecture
Parallelization of the full WLS State Estimation Code done based

 
on Cray language directives
WECC model simplified: ~14000 buses
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Challenges in Dynamic State EstimationChallenges in Dynamic State EstimationChallenges in Dynamic State Estimation

Non-linearity of the model
Large set of ODEs and Algebraic Equations
Sparsity 
Real-time operation requirements 
Need solvers effective for the power system area 
Data management for telemetry data
We are developing Extended Kalman Filter
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Added Complexity of Problem ScalesAdded Complexity of Problem ScalesAdded Complexity of Problem Scales
Data Volume/Rate and State Estimation Requirements

SCADA: ~4 seconds 100 time speedup
6 GB/day

Phasor data: 1/30 second 104 time speedup
5 GB/day 3 TB/day

Problem Size
Currently contingency analysis: N-1 only = ~20000 cases, BPA runs 
only 500 select cases every 5 minutes.
N-2 = ~108; N-3 = ~1012; N-4 = ~1017 a Peta-scale problem

Other Factors
Weather – load, wind power
Environment 
…

It can not be solved with hardware and software currently 
used. We must explore advanced computing

Dozens of components 
went out of service 
during 2003 blackout!!!
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Outlook into the Future 
with HPC Power System Computation 

Outlook into the FutureOutlook into the Future 
with HPC Power System Computationwith HPC Power System Computation

Better Models and Simulation 
Model identification/validation/enhancement
Topology/parameter estimation and identification
Faster dynamic simulation 

Better Monitoring
Dynamic stability monitoring
Response adequacy measurement and monitoring
Power quality monitoring/enhancement

Better Control
SPS/RAS design and operation
Reactive power coordination
Resource adequacy, commitment & scheduling
Fault/outage management
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Questions? Questions? Questions? 
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