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Overview

• Achievements
– global patterns and ‘laws’ (static/dynamic)
– generators
– influence propagation
– communities; graph partitioning
– local patterns: frequent subgraphs

• Challenges
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Motivating questions:

• How does the Internet look like?
• What constitutes a ‘normal’ social 

network?
• ‘network value’ of a customer? 

[Domingos+]
• which gene/species affects the others 

the most?
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Problem #1 - topology

How does the Internet look like? Any rules?
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Solution#1: Rank exponent R
• A1: Power law in the degree distribution 

[SIGCOMM99]
internet domains

log(rank)

log(degree)

-0.82

att.com

ibm.com
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Power laws

• In- and out-degree distribution of web sites 
[Barabasi], [IBM-CLEVER]

log indegree

log(freq)

from [Ravi Kumar, 
Prabhakar Raghavan, 
Sridhar Rajagopalan, 
Andrew Tomkins ]
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epinions.com

• who-trusts-whom 
[Richardson + 
Domingos, KDD 
2001]

(out) degree

count
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Even more power laws:

• web hit counts [w/ A. Montgomery]

Web Site Traffic

log(freq)

log(count)

Zipf
“yahoo.com”
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• Achievements
– global patterns and ‘laws’ (static/dynamic)
– generators
– influence propagation
– communities; graph partitioning
– local patterns: frequent subgraphs

• Challenges
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Problem#2: evolution
Given a graph:

• how will it look like, next 
year?

[from Lumeta: ISPs 6/1999]
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Evolution of diameter?

• Prior analysis, on power-law-like graphs, 
hints that

diameter ~ O(log(N))     or
diameter ~ O( log(log(N)))

• i.e.., slowly increasing with network size
• Q: What is happening, in reality?
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Evolution of diameter?

• Prior analysis, on power-law-like graphs, 
hints that

diameter ~ O(log(N))     or
diameter ~ O( log(log(N)))

• i.e.., slowly increasing with network size
• Q: What is happening, in reality?
• A: It shrinks(!!), towards a constant value
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Shrinking diameter

ArXiv physics papers 
and their citations

[Leskovec+05a]
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Shrinking diameter

ArXiv: who wrote what
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Shrinking diameter

U.S. patents citing each 
other
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Shrinking diameter

Autonomous systems
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Temporal evolution of graphs

• N(t) nodes; E(t) edges at time t
• suppose that 

N(t+1) = 2 * N(t)
• Q: what is your guess for 

E(t+1) =? 2 * E(t)
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Temporal evolution of graphs

• N(t) nodes; E(t) edges at time t
• suppose that 

N(t+1) = 2 * N(t)
• Q: what is your guess for 

E(t+1) =? 2 * E(t)
• A: over-doubled!

x



DoE/DoD, 2007 C. Faloutsos 19

School of Computer Science
Carnegie Mellon

Densification Power Law

ArXiv: Physics papers
and their citations

1.69

N(t)

E(t)
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Densification Power Law

U.S. Patents, citing each 
other

1.66

N(t)

E(t)
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Densification Power Law

Autonomous Systems

1.18

N(t)

E(t)
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Densification Power Law

ArXiv: who wrote what

1.15

N(t)

E(t)
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Summary of ‘laws’

Static graphs
• power law degrees; power law eigenvalues
• communities (within communities)
• small diameters
Dynamic graphs
• shrinking diameter
• densification power law
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Overview

• Achievements
– global patterns and ‘laws’ (static/dynamic)
– generators
– influence propagation
– communities; graph partitioning
– local patterns: frequent subgraphs

• Challenges
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Problem#3: Generators

• Q: what local behavior can generate such 
graphs?
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Problem#3: Generators

Q: what local behavior can generate such 
graphs?

• A1: Preferential attachment [Barabasi+]
• A2: ‘copying’ model [Kleinberg+]
• A3: ‘forest-fire’ model [Leskovec+]
• A4: Kronecker [Leskovec+]
• A5: Economic reasons [Papadimitriou+]
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Q: what local behavior can generate such 
graphs?

• A1: Preferential attachment 
• A2: ‘copying’ model
• A3: ‘forest-fire’ model
• A4: Kronecker
• A5: Economic reasons

Problem#3: Generators

power law degree

+ communities

+ DPL

+ easily parallilizable
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– generators
– influence propagation
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– local patterns: frequent subgraphs

• Challenges
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Problem#4: influence propagation

• how do influence/rumors/viruses propagate?
• what is the best customer to market to?
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Problem#4: influence propagation

• how do influence/rumors/viruses propagate?
– tipping point [Kleinberg+]
– first eigenvalue -> epidemic threshold 

[Chakrabarti+]
• what is the best customer to market to?

– network value of a customer [Domingos+]
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Overview

• Achievements
– global patterns and ‘laws’ (static/dynamic)
– generators
– influence propagation
– communities; graph partitioning
– local patterns: frequent subgraphs

• Challenges
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Problem #5: communities

• how to find ‘natural’ communities, quickly?
• how to find ‘strange’/suspicious/valuable 

edges?
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Problem #5: communities

• how to find ‘natural’ communities, quickly?
– network flow [Flake+]
– node/edge betweeness (~ ‘stress’)
– cross-associations [Chakrabarti+]
– 2nd eigenvalue; METIS [Karypis+]
– random walks [Newman]
– etc etc etc
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Problem #5: communities

• connection sub-graphs [Faloutsos+]



DoE/DoD, 2007 C. Faloutsos 35

School of Computer Science
Carnegie Mellon

Problem #5: communities

• connection sub-graphs [Faloutsos+]
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Problem #5: communities

• connection sub-graphs [Faloutsos+]
• BANKS system [Chakrabarti+]
• ObjectRank [Papakonstantinou+]
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Overview

• Achievements
– global patterns and ‘laws’ (static/dynamic)
– generators
– influence propagation
– communities; graph partitioning
– local patterns: frequent subgraphs

• Challenges
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Problem #6: local patterns

• Which sub-graphs are common/frequent?

molecule #1 molecule #M

C C

C H

H
C C

CN

N
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Problem #6: local patterns

• Which sub-graphs are common/frequent?

molecule #1 molecule #M

C C

C H

H
C C

CN

N
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Problem #6: local patterns

• Clever extensions of ‘Association Rules’ (= 
frequent itemsets / market basket analysis)
– [Jiawei Han+]
– [Jian Pei+]
– [G. Karypis]
– [M. Zaki+] 
– ...
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Overview

• Achievements
• Challenges

– time evolving graphs
– multi-graphs
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Time evolving graphs

• Q: what will happen next? (eg., on a traffic 
matrix?)

1/1/2005
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Time evolving graphs

• Q: what will happen next? (eg., on a traffic 
matrix?)

1/2/2005
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Time evolving graphs

• Q: what will happen next? (eg., on a traffic 
matrix?)

1/3/2005



DoE/DoD, 2007 C. Faloutsos 45

School of Computer Science
Carnegie Mellon

Time evolving graphs

• Q: what will happen next? (eg., on a traffic 
matrix?)

1/4/2005

?
?

? ?



DoE/DoD, 2007 C. Faloutsos 46

School of Computer Science
Carnegie Mellon

Overview

• Achievements
• Challenges

– time evolving graphs
– multi-graphs
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Multi-graphs

• Patterns/outliers?

friends

co-authors
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Multi-graphs

• Relational Learning
• link prediction, feature extraction [Jensen+] etc
• Dis-ambiguation, de-duplication [Getoor+] etc

friends

co-authors
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Promising solution: tensors

I x J x K

destination
person

so
ur

ce
pe

rs
on

type of
contact
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Tensors: ~SVD, for >=3 modes

¼

I x R

K
x R

A
B

J x R

C

R x R x R

I x J x K

+…+=

Foil: from Tamara Kolda (Sandia)
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=
U

I x R

V
J x R

WK
x R

R x R x R

Specially Structured Tensors
• Tucker Tensor • Kruskal Tensor

I x J x K

=
U

I x R

V
J x S

WK
x T

R x S x T

I x J x K

Our 
Notation

Our 
Notation

+…+=

u1 uR

v1

w1

vR

wR

“core”

Foil: from Tamara Kolda (Sandia)
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Conclusions - achievements

• Surprising patterns in graphs
– power laws; communities
– small/shrinking diameters

• simple, local behavior can lead to such 
patterns (eg., preferential attachment, etc)

• fast algorithms for communities/partitioning
• fast algorithms for ‘frequent subgraphs’
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Conclusions - next steps

• multi-graphs
• time-evolving graphs
• scalability
• (graph sampling)
• (large graph visualization)
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Conclusions - philosophically:

• deep connections with self-similarity, 
cellular automata (~agents), and ‘fractals’
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Resources

• Manfred Schroeder “Chaos, Fractals and 
Power Laws”, 1991

• A-L. Barabasi, “Linked”, 2002
• D. Watts, “Six Degrees”, 2004
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Thank you!

Contact info:
christos <at> cs.cmu.edu
www. cs.cmu.edu /~christos

(w/ papers, datasets, code, etc)
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