

Graph Mining, self-similarity and power laws

Christos Faloutsos Carnegie Mellon University

Overview

- Achievements
 - global patterns and 'laws' (static/dynamic)
 - generators
 - influence propagation
 - communities; graph partitioning
 - local patterns: frequent subgraphs
- Challenges

Motivating questions:

- How does the Internet look like?
- What constitutes a 'normal' social network?
- 'network value' of a customer?
 [Domingos+]
- which gene/species affects the others the most?

Problem #1 - topology

How does the Internet look like? Any rules?

Solution#1: Rank exponent R

• A1: Power law in the degree distribution [SIGCOMM99]

internet domains

Power laws

• In- and out-degree distribution of web sites [Barabasi], [IBM-CLEVER]

log(freq)

DoE/DoD, 2007

log indegree

count

epinions.com

who-trusts-whom
 [Richardson +
 Domingos, KDD
 2001]

(out) degree

DoE/DoD, 2007

Even more power laws:

• web hit counts [w/ A. Montgomery]

Overview

- Achievements
 - global patterns and 'laws' (static/dynamic)
 - generators
 - influence propagation
 - communities; graph partitioning
 - local patterns: frequent subgraphs
- Challenges

Problem#2: evolution

Given a graph:

• how will it look like, next year?

[from Lumeta: ISPs 6/1999]

DoE/DoD, 2007

C. Faloutsos

Evolution of diameter?

• Prior analysis, on power-law-like graphs, hints that

diameter ~ O(log(N)) or diameter ~ O(log(log(N)))

- i.e.., slowly increasing with network size
- Q: What is happening, in reality?

Evolution of diameter?

• Prior analysis, on power-law-like graphs, hints that

diameter ~ O(log(N)) or diameter ~ O(log(log(N)))

- i.e.., slowly increasing with network size
- Q: What is happening, in reality?
- A: It **shrinks**(!!), towards a constant value

ArXiv physics papers and their citations [Leskovec+05a]

ArXiv: who wrote what

U.S. patents citing each other

Autonomous systems

Temporal evolution of graphs

- N(t) nodes; E(t) edges at time t
- suppose that

N(t+1) = 2 * N(t)

• Q: what is your guess for $\Gamma(1) = 0.0 \times \Gamma(1)$

E(t+1) = ?2 * E(t)

Temporal evolution of graphs

- N(t) nodes; E(t) edges at time t
- suppose that

N(t+1) = 2 * N(t)

• Q: what is your guess for

 $E(t+1) = ? \times * E(t)$

• A: over-doubled!

ArXiv: Physics papers and their citations

U.S. Patents, citing each other

Autonomous Systems

ArXiv: who wrote what

Summary of 'laws'

Static graphs

- power law degrees; power law eigenvalues
- communities (within communities)
- small diameters
- Dynamic graphs
- shrinking diameter
- densification power law

Overview

- Achievements
 - global patterns and 'laws' (static/dynamic)
 - generators
 - influence propagation
 - communities; graph partitioning
 - local patterns: frequent subgraphs
- Challenges

Problem#3: Generators

• Q: what local behavior can generate such graphs?

Problem#3: Generators

- Q: what local behavior can generate such graphs?
- A1: Preferential attachment [Barabasi+]
- A2: 'copying' model [Kleinberg+]
- A3: 'forest-fire' model [Leskovec+]
- A4: Kronecker [Leskovec+]
- A5: Economic reasons [Papadimitriou+]

Problem#3: Generators

- Q: what local behavior can generate such graphs?
- A1: Preferential attachment
- A2: 'copying' model
- A3: 'forest-fire' model
- A4: Kronecker
- A5: Economic reasons

power law degree

+ communities

+ DPL

Overview

- Achievements
 - global patterns and 'laws' (static/dynamic)
 - generators
 - influence propagation
 - communities; graph partitioning
 - local patterns: frequent subgraphs
- Challenges

Problem#4: influence propagation

- how do influence/rumors/viruses propagate?
- what is the best customer to market to?

Problem#4: influence propagation

- how do influence/rumors/viruses propagate?
 - tipping point [Kleinberg+]
 - first eigenvalue -> epidemic threshold [Chakrabarti+]
- what is the best customer to market to?

– network value of a customer [Domingos+]

Overview

- Achievements
 - global patterns and 'laws' (static/dynamic)
 - generators
 - influence propagation
 - communities; graph partitioning
 - local patterns: frequent subgraphs
- Challenges

- how to find 'natural' communities, quickly?
- how to find 'strange'/suspicious/valuable edges?

- how to find 'natural' communities, quickly?
 network flow [Flake+]
 - node/edge betweeness (~ 'stress')
 - cross-associations [Chakrabarti+]
 - 2nd eigenvalue; METIS [Karypis+]
 - random walks [Newman]
 - etc etc etc

• connection sub-graphs [Faloutsos+]

• connection sub-graphs [Faloutsos+]

- connection sub-graphs [Faloutsos+]
- BANKS system [Chakrabarti+]
- ObjectRank [Papakonstantinou+]

Overview

- Achievements
 - global patterns and 'laws' (static/dynamic)
 - generators
 - influence propagation
 - communities; graph partitioning
 - local patterns: frequent subgraphs
- Challenges

Problem #6: local patterns

• Which sub-graphs are common/frequent?

molecule #1

molecule #M

Problem #6: local patterns

• Which sub-graphs are common/frequent?

molecule #1

molecule #M

Problem #6: local patterns

- Clever extensions of 'Association Rules' (= frequent itemsets / market basket analysis)
 - [Jiawei Han+]
 - [Jian Pei+]
 - [G. Karypis]
 - [M. Zaki+]

Overview

- Achievements
- Challenges
 - time evolving graphs
 - multi-graphs

• Q: what will happen next? (eg., on a traffic matrix?)

1/1/2005

• Q: what will happen next? (eg., on a traffic matrix?)

1/2/2005

• Q: what will happen next? (eg., on a traffic matrix?)

1/3/2005

• Q: what will happen next? (eg., on a traffic matrix?)

Overview

- Achievements
- Challenges
 - time evolving graphs
 - multi-graphs

Multi-graphs

• Patterns/outliers?

Multi-graphs

- Relational Learning
- link prediction, feature extraction [Jensen+] etc
- Dis-ambiguation, de-duplication [Getoor+] etc

Promising solution: tensors

Foil: from Tamara Kolda (Sandia)

C. Faloutsos

Specially Structured Tensors

- Tucker Tensor $\mathfrak{X} = \mathfrak{g} \times_1 \mathfrak{U} \times_2 \mathfrak{V} \times_3 \mathfrak{W}$ $=\sum_{r}\sum_{s}\sum_{t}g_{rst}\,\mathbf{u}_{r}\circ\mathbf{v}_{s}\circ\mathbf{w}_{t}$ $\equiv [\![\boldsymbol{\mathfrak{G}} \ ; \mathbf{U}, \mathbf{V}, \mathbf{W}]\!]$ IxJxK IxJxK IxR J x S U X X R x S x T
- Kruskal Tensor

$$\begin{aligned} \mathbf{\mathfrak{X}} &= \sum_{r} \lambda_r \ \mathbf{u}_r \circ \mathbf{v}_r \circ \mathbf{w}_r \\ &\equiv \llbracket \lambda \ ; \mathbf{U}, \mathbf{V}, \mathbf{W} \rrbracket$$

v₁

DoE/DoD, 2007

Foil: from Tamara Kolda (Sandia)

Conclusions - achievements

- Surprising patterns in graphs
 - power laws; communities
 - small/shrinking diameters
- simple, local behavior can lead to such patterns (eg., preferential attachment, etc)
- fast algorithms for communities/partitioning
- fast algorithms for 'frequent subgraphs'

Conclusions - next steps

- multi-graphs
- time-evolving graphs
- scalability
- (graph sampling)
- (large graph visualization)

Conclusions - philosophically:

• deep connections with self-similarity, cellular automata (~agents), and 'fractals'

Resources

- Manfred Schroeder "Chaos, Fractals and Power Laws", 1991
- A-L. Barabasi, "Linked", 2002
- D. Watts, "Six Degrees", 2004

References

- R. Albert, H. Jeong, and A.-L. Barabási, *Diameter* of the World Wide Web. Nature 401, 130-131 (1999)
- A. Fabrikant, E. Koutsoupias, and C. Papadimitriou. *Heuristically Optimized Trade-offs: A New Paradigm for Power Laws in the Internet*. Int. Colloquium on Automata, Languages, and Programming (ICALP), Malaga, Spain, July 2002.

References

- [sigcomm99] Michalis Faloutsos, Petros Faloutsos and Christos Faloutsos, *What does the Internet look like? Empirical Laws of the Internet Topology*, SIGCOMM 1999
- [Leskovec 05] Jure Leskovec, Jon M. Kleinberg, Christos Faloutsos: *Graphs over time: densification laws, shrinking diameters and possible explanations.* KDD 2005: 177-187

References

- [brite] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. *BRITE: An Approach to Universal Topology Generation*. MASCOTS '01
- Xifeng Yan, Xianghong Jasmine Zhou, Jiawei Han: *Mining closed relational graphs with connectivity constraints*. KDD 2005: 324-333

Thank you!

Contact info: christos <at> cs.cmu.edu www. cs.cmu.edu /~christos (w/ papers, datasets, code, etc)