Productivity and Performance
Working Group

Breakout Summary

Kathy Yelick (co-chair) Josep Torrellas
Jeff Vetter (co-chair) Michael Perrone
Sam Williams Ananta Tiwari (Scribe)
Richard Murphy Robert Harrison
Kunle Olukotun Mike Merrill

Lenny Oliker



Cell

= Performance
— Efficiency of architecture
— Ability to manage BW
— Strong performance on compute intensive codes

= Productivity
— High initial switching cost to new programming
model/system
e Selecting among models
— Performance transparency
e SPEs performance is relatively easy to predict

— Should improve as software stack matures



XMT

= Performance
— Works well with dependent pointer-chasing streams of references
— Works well with irregular control flow
— Load balance automatically managed
— Abundant concurrency
— Strong performance on graph algorithms

= Productivity
— Simplified programmer goal (MTA)
e Expose fine-grained parallelism
e Keep thread pipes busy (>217?)
e Start with serial code
— Global memory helps with data orchestration
e Random Access example



Cell and XMT

= Both platforms can be productive for specific
applications
— XMT/MTA compiler and model is straightforward
— Cell software stack still maturing

= Performance instability is a problem for diverse
workloads for both platforms

— High variance in absolute performance across a range of
applications

— Key is to know this before you spend months trying all
optimizations...



Observations (1)

= Management of concurrency and locality

— XMT provides hardware mechanism and policy to
implement load balancing and [lack of] locality

— Cell provides multiple hardware mechanisms for
concurrency and locality; policy left to application

= Maturity of tools for porting, optimizing
— Compilers often fall short
— Move application work into runtime



Observations (2)

= Application characteristics
— Computational intensity
— Parallelism (multiple levels)
— Data movement (spatial, temporal)
— Predictability of computation and communication
e Prefetching, thread management
= With TCO of systems today, is it realistic to expect
transparent application performance?

= |s it possible to build one architecture to satisfy all

of these application domains without ‘bad’
productivity?



Productivity of Languages -> Architectures

= What features of an
architecture make it more
productive?

= Performance
complexity/instability

Language
Expressiveness €

|—
o
=

Matlab/
Python

High Performance
High Level Languages

UPC/CAF

4

C/Fortran
MPIl/OpenMP SIMD/
DMA Assembly/
VHDL
Low Language High
Performance

Source: HPCS Program



	Productivity and Performance�Working Group�Breakout Summary
	Cell
	XMT
	Cell and XMT
	Observations (1)
	Observations (2)
	Productivity of Languages -> Architectures

