
Memory System Utilization
• Memory level parallelism:

– Cell - issued via DMAs, allows a few dynamic instructions to express vast
MLP. However, requires predictive knowledge of data access patterns

– XMT - expressed via multithreading, requires at least one instruction per
word of MLP. Requires enough understanding of application to guarantee
no RAW hazards - but does not predictive knowledge of data access

• Spatial and Temporal Reuse:
– Cell - programmer must maximize efficiency of spatial (alignment issues)

and temporal (via explicit DMA to local store)
– XMT - Data cache hardware manages spatial and temporal reuse for local

memory accesses.
• Must organize code to leverage spatial locality at cache line granularity?

• Effectively hide/tolerate latency and utilize bandwidth
– CELL: Multiple prefetch DMAs outstanding
– XMT: Requires multiple threads and more than 1 outstanding memory

operation per stream

Which application characteristics allow Cell/XMT to use
memory subsystem effectively

– Parallelism
• For both systems threading alone is not sufficient to saturate memory system, requires

memory level parallelism
– Predictability of data access

• Required for high Cell performance (depends how we define “high” performance)
• Not required for XMT

– Computational Intensity
• Cell can become computationally bound

XMT cannot become computationally bound (is not good choice for computationally
intense problems)

– Locality
• Cell is structured to benefit from locality,

XMT small from cache line transfers - but cannot take advantage of locality
– Memory access regularity

• Cell has large effect (benefit unit stride),
XMT little effect

– Control flow regularity
• Cell has impact have to think about vector-like masks (speculation etc)

XMT - virtually no impact,

Continued
– Synchronization mechanisms

• Cell is traditional locks + mailboxes - could benefit from DMA synchronization if existed
(scatters across DMAs),
XMT has a rich set of sync primitives

– Alignment
• Cell optimal performance with 128 byte,
• XMT minor issue

– Address translation
• Cell - conventional approach, local store is like pinned memory+ spe-spe transfer

XMT uses segmented memory not pages, does not use virtual memory, TLB can cover
physical address space of whole machine

– Bank conflicts/contention
• Cell no special feature to avoid this (sequential access are spread over the banks),

XMT - address hashing
– Pointer chasing

• Cell needs to create virtual threads,
• XMT inherently doing this with threaded arch

OTHER
– Execution model sometimes lacks needed features

• Shared queue libraries (perhaps middleware can be utilized)

– Current interconnects lack implementation of global shared address space
• Switch are not powerful enough to easily implement this

	Memory System Utilization
	Which application characteristics allow Cell/XMT to use memory subsystem effectively
	Continued

