Algorithmic scalability and
load balancing

DOE/DOD Workshop on Emerging High
Performance Architecture and Applications

Breakout summary

David A. Bader and John Johnson

Two types of communities

1. Existing codebases, typically physical
simulations

— Validated algorithms

— Flywheel effect of developing architecture s that
self-select these applications

2. Emerging applications in data and discrete
sciences

— Algorithms are still under development
— Ample concurrency, yet not exploited

— Community may not have the HPC expertise or
iInvestment

Application Scalability Challenges

Bob Lucas e SheriLi
— Multiphysics requiring two types of load — More scalable algorithms are less
balancing effective
— Existing software base e David Bader
John Gilbert — Parallel data structures / algorithms for
— Latency dynamic, complex networks
— Long sequential dependencies in graph — Lack of locality
algorithms e Jean-Paul Watson
— Lack of locality — Non-local
— Lack of parallel data structures — Dynamic nature of graphs
Sam Williams — Adaptive, Dynamic load balancing are
— Complexity and portability; choosing problem sensitive
optimizations — Parallel data structures
— Memory performance e Brad Miller
Martin Berzins — Combinatorial optimization
— Load balancing, MPI — Gave up on communication between

— Productivity / efficiency data and replicated data

Graphs & Complex Networks

Kernels that are mentioned as
common to multiple domains:

 Problem-dependent

Structure) Be-llef CL.Jt .
— Load balancing * Clique finding
* Connectivity queries e Bipartite network flow
— Sequential

e Partitioning /

e Betweenness and other -
Decomposition

characteristics
e Sparse matrix problems * Junction Tree Construction

e Clustering e Feature extraction
e Subgraph isomorphism

Impediments to using today’s HPC

Parallel algorithms * High degree vertices require
Unknown structure sweeping large data sets
— Degree of Structure e Lack of standard body of

— Degree of Change (dynamic)
— Lack of locality

Partitioning / Load balance
Temporal changing
Large, shared memory

Data preparation of noisy
data

End-to-end, streaming

“primitives”, requires more
prototyping and exploration
of techniques

e Portability

e Existing infrastructure may
be too complex to explore
new algorithms

— High cost of entry to HPC

	Algorithmic scalability and�load balancing
	Two types of communities
	Application Scalability Challenges
	Graphs & Complex Networks
	Impediments to using today’s HPC

