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~pppp Motivation: Importance of studying
7 (micro-)turbulence In fusion plasmas

 Turbulence is believed to be
the mechanism for cross-field
transport in magnetically
confined plasmas:

— Size and cost of a fusion reactor
determined by particle and
energy confinement time and
fusion self-heating.

e Critical for ITER, the largest

fusion project ever ITER fusion reactor being built
attempted. In France. Largest device ever.
International collaboration.



~PPPL Best/only way to study plasma
7 turbulence: Large-scale simulations

« Plasma turbulence is a complex nonlinear phenomenon:

— Large time and spatial scale separations similar to fluid
turbulence.

— Self-consistent electromagnetic fields: many-body problem
— Strong nonlinear wave-particle interactions: kinetic effects.

— Importance of plasma spatial innomogeneities, coupled with
complex confining magnetic fields, as drivers for
microinstabilities and the ensuing plasma turbulence.

» Requires kinetic treatment using large-scale simulations.

e The Particle-in-Cell method is well-suited for this
type of calculation, and is very scalable.



=PPPL Particle-in-cell (P1C) method

 Particles sample distribution function in phase space.

e The particles interact via a grid, on which the potential
IS calculated from deposited charges.
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PPPL  Main optimization challenge for PIC

o “Gather-Scatter” operation in PIC codes

— The particles are randomly distributed in the simulation
volume (grid).

— Particle charge deposition on the grid leads to indirect
addressing in memory

— Not cache friendly (relatively low percentage of peak).
— Need to be tuned differently depending on the architecture.

particle array scatter operation

grid array



ABPPL Possible improvements of

gather/scatter performance

 The Cray XMT well-suited to handle gather/scatters
— A large number of threads could hide memory latency?
— What about the order in reduction operations?

o SIMD/vectorization works well for the “push” phase
(gather) but requires local copies of the grid for the
charge deposition (scatter phase).

— Our application, GTC, reached 24% of peak on the Earth
Simulator

— But uses a lot of memory

 Sorting the particles to improve locality is also a
possibility but is it really worth it?



ppplp  Gyrokinetic approximation for low

frequency modes
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o Gyro-motion: guiding center drifts +

charged ring k,p~1

— Parallel to B: mirror force,
magnetically trapped

/
— Perpendicular: E x B, polarization,
gradient, and curvature drifts @@

* Gyrophase-averaged 5D gyrokinetic

/
equation @@
— Suppress _plasma oscillation and /@\[)@@

gyro-motion

— Larger time step and grid size,
smaller number of particles



PPPL Gyrokinetic PIC: point particles
7 replaced by “charged rings”

The radius of each ring changes with local magnetic field strength and
particle velocity.

Charge Deposition Step (SCATTER operation)

Classic PIC GK PIC

Dl

4-Point Average
(W.W. Lee)



SPPPL Solving the Maxwell equations

on the grid

All PIC codes need to solve the Poisson equation

Many codes use FFTs to solve the equation spectrally
— Easy and straightforward.

— Requires AlltoAll communications (transpose) for multi-
dimensional FFTs = very intensive.

— Will it scale to very large number of processors?

Other codes, including GTC, solve the equation in real
space

— A popular library to handle this is PETSc

— Can switch solvers, pre-conditioners, use multi-grid, etc

— Will it continue to scale as well?

Fortunately, the gyrokinetic Poisson equation is only 2D



f:%g}’PFPI. Parallel model for PIC: Domalin

7 decomposition + particle distribution

e Domain decomposition:
— 3D grid (with its particles) divided
between MPI processes.
 Particle distribution method

— The particles in a toroidal section a
equally divided between several MPI
Processes

» Particles randomly distributed between
processors within a toroidal domain.

 Domains cannot be too small.
e GTC:

— Toroidal decomposition

Processor 2
Processor 3

Processor O

— Particle distribution © o 0 g0°_ o°
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—;:%;‘;’PFPI Hybric
o

MPI1-OpenMP loop-level
parallelism in GTC
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%PFPI Great particle scaling for GTC...

Compute Power of the Gyrokinetic Toroidal Code

Number of particles (in million) moved 1 step in 1 second
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New challenges for scaling

e Having both kinetic ions and kinetic electrons in the
same simulation creates true multi-scale calculation

The electrons are much faster than the ions.

Need to “sub-cycle” the electrons, i.e. push the electrons
several steps between each ion step.

The electrons can cross several grid cell in a single sub-step,
which creates new challenges for parallel scaling.

Equations for the fields are much more difficult to solve.
Requires much higher resolution grid = more grid points.

 Fully electromagnetic kinetic simulations for fusion
plasmas are very challenging

Ultimate goal for “gyrokinetic MHD”.
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—;:f;z:;;,ﬁpppl- Concluding remarks

* Improving the performance of the gather/scatter algorithm
In PIC codes is key.

 Fast and scalable solvers are required to handle the fully
electromagnetic system.

* For gyrokinetic MHD simulations, we will need to run the
codes for considerably more time steps, which requires
more particles.

« How far can we push the current parallel model?
« How can the new architectures help?
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