
Interactive, Real-Time, Distributed,
Heterogeneous, Agent-based Computing

Information Sciences Institute, Computational Sciences Division

29 November 2007
Bob Lucas
rflucas@isi.edu

Parallel Universes

Big Science
Big SMP Cluster
Batch mode
Best Effort
SPMD
MPI

Military Experimentation
Dispersed Clusters & PCs
Interactive
Soft Real Time
Heterogeneous
RTI

Urban Resolve Experiment

JFCOM Experimentation Directorate
Joint Urban Operations Experiments

Global Terrain

View of a City

Experimental Sensor Architecture

Geographically Distributed

Heterogeneous Computing

Log DB

SQL DB

MARCI

Logger

Log DB

SQL DB

MARCI

Logger

Log DB

SQL DB

MARCI

Logger

Log DB

SQL DB

MARCI

Logger

Log DB

SQL DB

MARCI

Logger

Log DB

SQL DB

MARCI

Logger

Log DB

SQL DB

MARCI

Logger

Front End

OOSSOARSLAMEMJSAFCulture

Event
Control

Pucker

Data Intensive Too

Fully distributed logging at
point of generation

RTI Interceptor captures
simulation events
Archiver stores events
to local disk
Decoderd stores events
to local relational
database

Binary DB for R/T queries
SQL DB for after action

Sim Federate

Interceptor

RTI-s

Logger

archiver

decoderd

Nodal DB
(NRT)

sqlite db

sqlited

Nodal Log Store

metadata

*.fed, *.omd, …

*.dat[.gz]

SimpleArchiverTCP

SOCKET

Issues with Shared Resources

Queuing of interactive jobs
Code has to run when the people are ready
Don’t keep the Major General waiting!

Authentication
Puckers don’t log on. Are they users?
Our developers all “su – j9”
They use VNC

Network Security
MARCI and RTI listen on open ports
Tolerates failure of any individual node

And of course, the big one …
Classified data

Dedicated HPC Projects

DOD HPCMPO support for experimentation
Dedicated systems required due to:

Real-time use
Security policies

DHPIs for experimentation:
Maui HPCC & ASC in 2004

256 CPUs each
JFCOM J7 JATTL in 2007

1024 CPUs
256 GPUs

JFCOM J7 JATTL

Need for Accelerators

Don’t port millions of lines of C or Java
We want accelerators to “clip the peaks”

GPU Accelerators

NVIDIA G80:
Multi-core processor
Multi-threaded
SIMD ALUs
Explicit hierarchy
CUDA language

MPL descendent
Initial Kernels:

Line-of-Sight
Route Planning
Illumination

Figure courtesy of NVIDIA

CUDA Code Fragment

do j = jl, jr
do i = jr + 1, ld
x = 0.0
do k = jl, j -

1
x = x + s(i, k) * s(k, j)

end do
s(i, j) = s(i, j) -

x
end do

end do

ip=0;
for (j = jl; j <= jr; j++) {

if(ltid <= (j-1)-jl){
gpulskj(ip+ltid) = s[IDXS(jl+ltid,j)];
}

ip = ip + (j - 1) – jl + 1;
}

__syncthreads();

for (i = jr + 1 + tid; i <= ld;
i += GPUL_THREAD_COUNT) {

for (j = jl; j <= jr; j++) {
gpuls(j-jl,ltid) = s[IDXS(i,j)];
}

ip=0;
for (j = jl; j <= jr; j++) {

x = 0.0f;
for (k = jl; k <= (j-1); k++) {

x = x + gpuls(k-jl,ltid) * gpulskj(ip);
ip = ip + 1;
}
gpuls(j-jl,ltid) -= x;

}
for (j = jl; j <= jr; j++) {

s[IDXS(i,j)] = gpuls(j-jl,ltid);
}

}

Catch-22

Ideally one would place entire neighborhoods on one CPU
Virtue: localize interactions
Problem: sensor footprints create Amdahl fractions

Solution: “striping” of entities amongst computers
As the YMP or MTA distributed memory references amongst banks
Requires each system to hold all the terrain
Maximizes communication

Ideal solution would be a large shared address space
Processors pull from work queue, eliminating local bottleneck.
Eliminate redundant databases (not just terrain)

Shared Memory

Scalable entities enable increase in fidelity
“Artificial Intelligence” rule-driven, behavior models
Today fidelity is bounded by the power of one thread
Its not going to get better any time soon
I can’t imagine parallelizing with MPI

Enable efficient database queries
Today event logs are stored in hundreds of
geographically distributed relational databases

Summary
Bruce’s Three Points

Modeling and simulation is moving to HPC
Much thanks to HPCMP
Big success with ensembles of loosely connected jobs
Users work around known problems

What’s holding us back?
No scalable entities: entity fidelity limited by power of one thread
Distributed databases: limits analytic capability
Inertia: 10^7 lines of code & lots of users

How can new technology help?
Needs to be evolutionary (can’t abandon TRADOC validated S/W)
Heterogeneity OK: accelerators for specific kernels
Shared memory for scaling rule-driven behavior models
Shared address space:

Eliminate redundant storage
Enable sophisticated real-time analysis

Acknowledgements

Work supported by AFRL and JFCOM

AFRL Rome Labs Contract F30602-02-C-0213

DHPI systems provided to JFCOM J9 by HPCMPO

2004 DHPI (Koa & Glenn) hosted by MHPCC and ASC

2007 DHPI (Joshua) hosted by JFCOM J7 JATTL

Trick Question

What has?
One front end CPU
Eight back end CPUs
SIMD extensions
Private local memories
Shared main memory

Trick Question

What has?
One front end CPU
Eight back end CPUs
SIMD extensions
Private local memories
Shared main memory

Late-model Cray 2 and STI Cell both!

Not quite the same of course
Only one had CF90: transparent vectorization and autotasking

If STI Cell had CF90, it would be an ideal “crash” machine
75% of GM’s cycles

Bonus Slides

Summary

Modeling and simulation is a O($1B) business.
Mainly military training
Civilian use growing

Accelerators appear to be low-hanging fruit.
GPUs are cheap and ubiquitous
Augment standard PCs

Share memory critical to our future
Scalable entities
Real-time analysis

Lots of inertia to overcome

	Slide Number 1
	Parallel Universes
	Urban Resolve Experiment
	Global Terrain
	View of a City
	Experimental Sensor Architecture
	Geographically Distributed
	Heterogeneous Computing
	Data Intensive Too
	Issues with Shared Resources
	Dedicated HPC Projects
	Need for Accelerators
	GPU Accelerators
	CUDA Code Fragment
	Catch-22
	Shared Memory
	Summary�Bruce’s Three Points
	Acknowledgements
	Trick Question
	Trick Question
	Bonus Slides
	Summary

