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My View: Future HPC Evolutionary
Paths Are Multiplying

e Today: “Killer Micros” becoming
“physics-limited” very hungry multi-
core monsters

e Maturing Multi-threading & Tiling
providing more nimble systems

e |s there an alternative evolutionary
path we’ve ignhored?
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My Concern: We’re Focused on the
Wrong Aspect of the Wall
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And Perhaps Missing Another Wall

and Getting Rid of Heat

Dominate Area?
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It Also Bothers Me That:

e Modern microprocessor state growing as Moore’s

Law
— Regardless of the number of computational units

e« Memory is as dumb as it was 50 years ago

e \We insist on giving persistent names to the
tarballs representing the physical cores

e And go to great extremes to separate the
persistent names of memory from its location

e Newer classes of apps “visit” data irregularly
— Where “caching” copies is wasted energy
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The Way We Were
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The Historical Top 10
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Clock Rates
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Processor Parallelism
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Concurrency:
Flops per Cycle
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The Moore’s Law We K & Love

Knew
e Goal: 4X Functionality every 3 years

e Underlying technology improvement:
— Growth in transistor density Yes
— Growth in transistor switching speed Yes
— Growth in size of producible die

e Microprocessors: Functionality=IPS
— —~1/2 from higher clock rate No: heat
— ~1/2 from more complex microarchitectures No: complexity

e Memory: Functionality = Storage capacity
— —~2X from smaller transistors Yes
— Shrinkage in architecture of basic bit cell Yes, but ..
— Increase in die size Not at commercially viable prices

And it Is silent on inter-chip 1/0 a
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The Darwinian
Multi-Core Evolution

Up to ~2002
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Area Scaling Alone Reveals the
Rationale for Multi-Core
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le core chip & replicate to fill 280 sg mm die
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And a Flood Tide of Recent

ANnnouncements
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And Not Just “Twosies”
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The Classical Limiting Factors
for Microprocessor Chips:
Power & Contacts
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Peak Logic Clock Rates
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2005 projection was for 5.2 GHz — and we didn’t make it in production.
Further, we're still stuck at 3+GHz in production.
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Why the Clock Flattening?
POWER
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Because Vdd No Longer Declining
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Multi-core Power and Clock

Max Limit Dﬁ?;ii?,ilgg Assume Increasing
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Chip Power = Cap/}evice*#_devices/core*cores/chip

* Clock * Voltage?

Max Clock Rate \

Grows Reaching an
Rapidly Asymptotic
with Limit
Technology
But ONLY KNOB to Balance Equation!!
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Rewriting for Clock

Clock = Max_chip_power(T) * Reduction_in_core_area

Cap_per_device * V2

This now governs Core Freguency.
Not Faster Transistors!!!
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Relative Change In Factors

1.40
V/Jr—+——«——«——«——«——«——«——«——«——«——«—4
1.20 .
<
o
o
(Q\V
=
]
=
T .
[}
X 0.40 - L Aoa
\l\ A A
0.20 | - Aaa
. ‘\1‘_._‘~.- A4l
- m
0.00 TR e-w-.-
2004 2008 2012 2016 2020
——¢--Max Power (N) —-—-®B—-Area (N) ~-—-A---Cap per Device (D)
- X---Vdd (D) Power Limited Clock

T UNIVERSITY OF
5/ NOTRE DAME



What Kind of Core Should We
Replicate?

Complex designs
ive most performance

Relative IPS
Relative Area

But also largest

* Issue Width area Relative éloz.oo 350 400

But simpler‘gives
better performance/area
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What About Memory Bus Clocks?
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Does Logic Performance Match
Off-chip Bandwidth Potential?
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The Multi-Core Family Tree
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This may be the Architecture
You Think of for Multi-Core

(@) Hierarchical Designs

 Intel Core Duo
 IBM Powerb5
« AMD Opteron
« SUN Niagara

External Bandwidth = sum of escapes from cores
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But There’s at Least One Approach
with Lower Bandwidth Needs

(b) Pipelined Designs
* Most Router chips
* Many Video chips
« Some aspects of IBM Cell

External bandwidth largely independent of # of cor
@ i—_

29
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And then there’s Array Approaches that
Provide Significant Internal Memory
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And Today’s Memory Architecture
IS Evolving to Feed the Beast
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. But Not to Reduce Latency

AMB:
Advanced

Memory
Buffer Chip

We’ve introduced 16
extra chip crossings!
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A Simple Case Study
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A Modern HPC System

Computational Board
e 4 PE Nodes

e Each PE Node:
— Dual core Opteron @ 2.6GHz
— 4 DDR2 2GB DIMMs

e 4 Routers per Board

Key Ratios (all “Peak”)

e 2 Flops per cycle per core
e 1.5B per Flop

e 1.25B/s of Memory BW per
Flop per core

e 0.25B/s Link BW per flop per
PE

e (0.06-0.25B/s of Bisection BW

- UNIVERSITY OE -
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What Are We Doing with the Total
System Silicon?

Silicon Area Distribution Power Distribution

Random
8%

Random  \iemory
2% 9%

Routers
3%

Processors
3% Routers

33%

Processors
56%

Memory
86%
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What Is the Board Space
Utilization Like?

Board Space Distribution

Memory
10%

Processors

0,
White Space 24%

50%

Routers
8%

Random
8%
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A Dual Core Processor Chip

Other, 19.0%

3 HT Links,
5.4%
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Some Projections

Cubad CRE LancyBandwidth Sensitnity

e Off chip memory controls
performance

e |[PC/core more sensitive to
latency than bandwidth

- “Flat” off chip physical latency
== relative latency grows
with clock

Bandvidth (Astative io Optenan

Single Core Performance Factors p— e CRS Ly Sanstvly

Increase

82%
Increase

)re o4l
IPC .

i3 1.0 24
Latency (Relatws o Opteron)

‘—O—Clock Growth —#— Relative IPC Change = = = Relative IPS‘ Ack. R. Murphy, SNL > =
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Where Does This Lead Us?

e Use density increase to replicate cores
e Keep clock flat to minimize power

e Still need additional 1/0 for both bandwidth & latency
management (reduce gueuing delays by multiple banks)
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So What May This Mean
to the Top 5007
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The Emergence of More
Organized Architectures

UNIVERSITY OF

NOTRE DAME



Tiling & Local Memory Regularizes Layout,
Lowers Latency, Reduces Off-Chip
Bandwidth Needs

&
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- Work well with partitionable algorithms
e Good fit for applications that support weak scaling
e Inter-core communication DOES NOT USE CONTACTS

e Compiling problem: placement of kernels AND data
structures to minimize inter-core bandwidth

= Problems with global synchronization >
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Multi-Threading

e Provide explicit latency hiding

e Permits simpler cores with more efficient use of
data flow

e Increase potential for memory references “in
flight”

e Shares path to memory

e But still doesn’t help “single thread” performance
In terms of chained memory references

e Nor reduction of off-chip bandwidth (and
contacts)

* UNIVERSITY OEFE - [/
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A Brief History
of Multi-threaded Processors
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Sun’s Niagara

e 8 4-way multi-threaded single
ISsue cores

e 3MB 12 bank shared L2
e 4 DDR2 Memory Interfaces

e Measured 5.76 IPC vs Peak of
8 on Java Business B/M

e 63W @90nm (2W cores)

UltraSPARC-Core
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Remainder
, 23%

T~

Cores, 37%

//
/
/
/
/

Other
Functions, 10 1
3% AQ \
DDR2 \ ~
Interfaces, \\ ~
Crossbar, L2, 21% 1 ‘ —
3% T8 8588383233488 583%8
o o o o o o o o o o o o o o o o o
N N N N N N N N N N N N N N N N N
FPU, 2%
Entire L2 Area Single DDR2 I/F Area Crossbar

Single Core Area

T UNIVERSITY OF
5/ NOTRE DAME



Cray’'s XMT

Service & 10

DDR
FHY

DDR
Controller

)
. = —— Fiber Channel
Ee====egs™ RAID Controllers
Supports 128 Threads/core

Figure 2. MT processor block diagram

Table 3. Sparse matrix-vector multiply

Figure 1. Eldorado system architecture

Table 5. RandomA ccess

System T (sec.)

IBM Powerd 1.7 GHz (1 P) 26.10
MTA-2 (1P) 7.11
MTA-2 (2P) 3.59
MTA-2 (4P) 1.83

MTA-2 (8 P) 0.94
Eldorado (576 P) (estimated) 0.043
Eldorado (2112 P) (estimated) | 0.016
Eldorado (8064 P) (estimated) | 0.006

System Giga updates per second
Cray X1 800 MHz (60 P) 0.0031
IBM Powerd 1.7 GHz (256 P) 0.0055
MTA-2 (2P) 0.041
MTA-2 (5 P) 0.204
MTA-2 (10 P) 0.405
Eldorado (576 P) (estimated) 17.32
Eldorado (2112 P) (estimated) 47.57
Eldorado (8064 P) (estimated) 121.0

Table 4. Linked-list search

System N=5000 | N=10.000

SunFire 880 MHz (1 P) 9.3 107.0
Intel Xeon 2.8GHz (1 P) 7.15 40.0
MTA-2(1P) 0.485 1.98
MTA-2(2P) 0.053 0.197

Eldorado (576P) (estimiated) 0.0014 0.0058

Eldorado (2112 P) (estimiated) 0.0005 0.0020
Eldorado (8064 P) (estimiated) 0.0002 0.0008

John Feo, David Harper, Simon Kahan, Petr Konecny, “Eldorado”, Computing Frontiers, 2005
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Some Interesting Comparisons

Core L1 |FPU 2a_ | |
Niagara-1| 24 [ No {11.92/\1719
Niagara-1l| 24 | yes{<23.85\/2364

MIP64 [ 64 | ye . v
MIPS64 | 40 | No 436

So Multi-Threading Is not Free
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Problems Still Remain

e Programming models not changed
e States still very heavy

e Compiling to specific cores

e Data partitioning

e Problems with coherency

e Doesn’t address barriers, sync
points, ...

e Doesn’t help emerging low reuse
apps
— AMR
— Data mining
— Graph traversals
— Non-numeric solvers such as SAT

"1 JUNIVERSITY OF
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Are We Ready for a
Mutation?
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ldeas

e Ultra light weight “butterflies” take
functions to the data flowers

— Memory reference becomes “traveling
threadlet”

e But, like flowers, data can respond to
the touch of the butterfly.

— Add small amount of metadata to each word

e Finally, 1t's the “flowers” whose
location iIs important

s A AN G rfrl 50
JRIOLATIOR
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Adding Metadata to the Memory

e “Special Values”
— Uninitialized, error code, null

e Full/Empty bits
— And multiple flavors of “empty”
— Esp. “empty pending outstanding value”
— Greatly simplifies Producer/Consumer

e Forwarding
e Locked
e Traps

e Especially interesting when aliased to
thread state registers

T JUNIVERSITY OF
NOTRE DAME
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Full/Empty Bits & MPI
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One Step Further:
Allowing the Threads to Travel

e “Overprovision” memory with huge numbers of
anonymous execution sites
— Place at bottom of, or near, memory

e Reduce state of a thread to a memory reference

e Make creating a new thread “near” some
memory a cheap operation

e Allow thread to “move” to new site when locality
demands

e Don’t require target to maintain code

Latency reduced by huge factors

- UNIVERSITY OF - Y &
NOTRE DAME shop, | Nov. 29 2007 //\W@%ﬁ@ﬁ



“Piglet” Processing
At Base of Memory

Target Address Operands & Working Registers PC Code
Additional Data Payload

THREADLET FORMAT

NETWORK
INTERCONNECT

“CLASSICAL”
HOST CPU NODE

.
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NOTRE DAME orkshop, Nov. 29 2007 //\W@%ﬁ O



Types of Piglet Programs

e Classical memory operations
e Atomic Memory Operations
e Short Vector to Memory

e “Object-oriented” method evaluation at
the object

e Small slices of programs

T
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Example: AMO

e AMO = Atomic Memory Operation
— Update some memory location
— With guaranteed no interference
— And return result

e Parcel Registers: A=Address, D=Data, R=Return Address

e Sample Code:
R T/ LY/ ~ S
~ L1: LOCK & LOAD
~op - Atomic Update “At the Memory”
_.STORE & RELEASE L1 ;

- UNIVERSITY OE -
NOTRE DAME p, Nov. 29 2007 iﬁﬁ@%ﬁ ' N



Vector Add (Z[11=X[171+Y[I]) via

storein Q Z’s

Threadlets
pe Transaction Reduction factor:
«1.66X (Q=1)
*10X (Q=6)
Accumulate Q ° up to 50X (Q:30)
X’s in payload
Z
¢
Fetch Q M
gy § ;
save in paylo’ad, ‘ 0 O O O @)
€ ¢

-

Y Stride thru Q elements
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Conclusions
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Conclusions

e (Hierarchical) Multi-core has taken over
— But clock rate will be limited by power
— And # of useable cores by contacts

e Simpler cores: more area/energy efficient
— But we can’t use all them in hierarchical architectures

e Latency will stifle single-thread performance

e Multi-threading provides better utilization
— But at an energy cost

e Pipelined/Array chips reduce need for off-chip
bandwidth

— But then run into power-limiting clock problem
— And require 2D data/code partitioning of code

e Are there alternatives that don’t fix code to cores?
BEST HPC Architecture != Best commodity architectu re
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A Personal Goal
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* Huge increase in silicon per board
* |_evel out power dissipation
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The Future

7
Will We Design Like This? Or This? )
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