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• Today: “Killer Micros” becoming 
“physics-limited” very hungry multi- 
core monsters

• Maturing Multi-threading & Tiling 
providing more nimble systems

• Is there an alternative evolutionary 
path we’ve ignored?

My View: Future HPC Evolutionary 
Paths Are Multiplying
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My Concern: We’re Focused on the 
Wrong Aspect of the Wall

What about bandwidth?

Today
Future Trend/
Memory Wall

}

7% Performance Difference
NOTE: ACCOUNTS ONLY FOR 
COMPUTATION (NOT MPI)!

Chart courtesy 
Richard Murphy, 

SNL

Application:
Trilinos
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And Perhaps Missing Another Wall

Does Supplying Energy 
and Getting Rid of Heat 

Dominate Area?
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It Also Bothers Me That:

• Modern microprocessor state growing as Moore’s 
Law
– Regardless of the number of computational units

• Memory is as dumb as it was 50 years ago

• We insist on giving persistent names to the 
tarballs representing the physical cores

• And go to great extremes to separate the 
persistent names of memory from its location

• Newer classes of apps “visit” data irregularly
– Where “caching” copies is wasted energy
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The Way We Were
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The Historical Top 10
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Clock Rates
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Processor Parallelism
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Concurrency: 
Flops per Cycle

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1/1/93 1/1/95 12/31/96 12/31/98 12/30/00 12/30/02 12/29/04 12/29/06

To
ta

l C
on

cu
rr

ec
nc

y

Top 10 Top System Top 1 Trend

CAGR 1.65



11DoE/DoD Workshop, Nov. 29 2007

The Moore’s Law We Know & Love

• Goal: 4X Functionality every 3 years

• Underlying technology improvement:
– Growth in transistor density
– Growth in transistor switching speed
– Growth in size of producible die

• Microprocessors: Functionality=IPS
– ~1/2 from higher clock rate
– ~1/2 from more complex microarchitectures

• Memory: Functionality = Storage capacity
– ~2X from smaller transistors
– Shrinkage in architecture of basic bit cell
– Increase in die size

Yes
Yes
Not in commercial volumes

No: heat
No: complexity

Yes
Yes, but ..

Not at commercially viable prices
And it is silent on inter-chip I/O

Knew
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The Darwinian 
Multi-Core Evolution

Now
Up to ~2002
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Area Scaling Alone Reveals the 
Rationale for Multi-Core
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How Many Can We Fit on a cm2?
Assume we scale entire current single core chip & replicate to fill 280 sq mm die
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And a Flood Tide of Recent 
Announcements
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And Not Just “Twosies”
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The Classical Limiting Factors 
for Microprocessor Chips: 

Power & Contacts
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Peak Logic Clock Rates
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Why the Clock Flattening? 
POWERPOWER
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Because Vdd No Longer Declining

0

1

2

3

4

5

6

1970 1980 1990 2000 2010 2020

Vd
d



21DoE/DoD Workshop, Nov. 29 2007

Multi-core Power and Clock

Chip Power = Cap/device*#_devices/core*cores/chip 

* Clock * Voltage2

Max Limit
Will Grow 

only Slightly

Reaching an
Asymptotic 

Limit

Assume
Constant

for
Multicore

Decreasing
~linearly

with
Technology

Increasing
As Square

with
Technology

Max Clock Rate
Grows

Rapidly
with

Technology

But ONLY KNOB to Balance Equation!!
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Rewriting for Clock

Clock =  Max_chip_power(T) * Reduction_in_core_area
-------------------------------------------------------------

Cap_per_device * V2

This now governs Core Frequency.
Not Faster Transistors!!!
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Relative Change In Factors
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What Kind of Core Should We 
Replicate?
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The Multi-Core Family Tree
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Cache/Memory

Cache
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Cache/
Memory

Core

Cache/
Memory
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Cache/
Memory

Core

Cache/
Memory

Core

. . .

Interconnect & Control

(c) Array Designs

This may be the Architecture 
You Think of for Multi-Core

• Intel Core Duo
• IBM Power5
• AMD Opteron
• SUN Niagara
• …

External Bandwidth = sum of escapes from cores

• IBM Cell
• Most Router chips
• Many Video chips

• Terasys
• Execube
• Yukon
• Intel Teraflop
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Cache/Memory
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(c) Array Designs

But There’s at Least One Approach 
with Lower Bandwidth Needs

• Intel Core Duo
• IBM Power5
• Sun Niagara
• …

• Terasys
• Execube
• Yukon
• Intel Teraflop

External bandwidth largely independent of # of cores

• Most Router chips
• Many Video chips
• Some aspects of IBM Cell
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Cache/Memory
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(c) Array Designs

And then there’s Array Approaches that 
Provide Significant Internal Memory

• Intel Core Duo
• IBM Power5
• Sun Niagara
• …

• IBM Cell
• Most Router chips
• Many Video chips

• Terasys
• Execube
• Yukon
• Intel Teraflop
• Some Aspects of Cell

Particularly Effective for Weak Scaling Apps
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And Today’s Memory Architecture 
is Evolving to Feed the Beast

M
ic

ro
pr

oc
es

so
r

N
or

th
 B

rid
ge

 
M

em
or

y 
C

on
tr

ol
le

r
Memory
Interface

M
ic

ro
pr

oc
es

so
r

M
ic

ro
pr

oc
es

so
r

N
or

th
 B

rid
ge

 
M

em
or

y 
C

on
tr

ol
le

r
N

or
th

 B
rid

ge
 

M
em

or
y 

C
on

tr
ol

le
r

Memory
Interface

State of the Art Peak Aggregate Bandwidth: ~ 6.4 GB/s



32DoE/DoD Workshop, Nov. 29 2007

… But Not to Reduce Latency

. . .. . .

AMB: 
Advanced
Memory
Buffer Chip

We’ve introduced 16 
extra chip crossings!

… And at ~2X Power Increase



33DoE/DoD Workshop, Nov. 29 2007

A Simple Case Study
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A Modern HPC System
Computational Board
• 4 PE Nodes
• Each PE Node:

– Dual core Opteron @ 2.6GHz
– 4 DDR2 2GB DIMMs

• 4 Routers per Board
Key Ratios (all “Peak”)
• 2 Flops per cycle per core
• 1.5B per Flop
• 1.25B/s of Memory BW per 

Flop per core 
• 0.25B/s Link BW per flop per 

PE
• 0.06-0.25B/s of Bisection BW 

per Flop
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What Are We Doing with the Total 
System Silicon?

Silicon Area Distribution

Memory
86%

Processors
3%

Routers
3%

Random
8%

Power Distribution
Memory

9%

Processors
56%

Routers
33%

Random
2%
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What Is the Board Space 
Utilization Like?

Board Space Distribution
Memory

10%

Processors
24%

Routers
8%

Random
8%

White Space
50%
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A Dual Core Processor Chip

http://techreport.com/reviews/2005q2/opteron-x75/dualcore-chip.jpg
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Some Projections
• Off chip memory controls 

performance

• IPC/core more sensitive to 
latency than bandwidth

• “Flat” off chip physical latency 
=> relative latency grows 
with clock
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Where Does This Lead Us?
• Use density increase to replicate cores

• Keep clock flat to minimize power

• Still need additional I/O for both bandwidth & latency 
management (reduce queuing delays by multiple banks)
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So What May This Mean 
to the Top 500?
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The Emergence of More 
Organized Architectures
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Tiling & Local Memory Regularizes Layout, 
Lowers Latency, Reduces Off-Chip 

Bandwidth Needs

• Work well with partitionable algorithms
• Good fit for applications that support weak scaling
• Inter-core communication DOES NOT USE CONTACTS
• Compiling problem: placement of kernels AND data 

structures to minimize inter-core bandwidth
• Problems with global synchronization



43DoE/DoD Workshop, Nov. 29 2007

Multi-Threading

• Provide explicit latency hiding

• Permits simpler cores with more efficient use of 
data flow

• Increase potential for memory references “in 
flight”

• Shares path to memory

• But still doesn’t help “single thread” performance 
in terms of chained memory references

• Nor reduction of off-chip bandwidth (and 
contacts)
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A Brief History 
of Multi-threaded Processors
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Sun’s Niagara
• 8 4-way multi-threaded single 

issue cores

• 3MB 12 bank shared L2
• 4 DDR2 Memory Interfaces
• Measured 5.76 IPC vs Peak of 

8 on Java Business B/M
• 63W @90nm (2W cores)
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Cray’s XMT

Supports 128 Threads/core

John Feo, David Harper, Simon Kahan, Petr Konecny, “Eldorado”, Computing Frontiers, 2005
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Some Interesting Comparisons

Core L1 FPU Area pJ/~
Niagara-I 24 No 11.92 1719
Niagara-II 24 yes 23.85 2364

MIP64 64 yes 9.59
MIPS64 40 No 436

So Multi-Threading is not Free
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Problems Still Remain
• Programming models not changed

• States still very heavy 

• Compiling to specific cores

• Data partitioning

• Problems with coherency

• Doesn’t address barriers, sync 
points, …

• Doesn’t help emerging low reuse 
apps
– AMR
– Data mining
– Graph traversals
– Non-numeric solvers such as SAT
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Are We Ready for a 
Mutation?
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Ideas

• Ultra light weight “butterflies” take 
functions to the data flowers
– Memory reference becomes “traveling 

threadlet”

• But, like flowers, data can respond to 
the touch of the butterfly.
– Add small amount of metadata to each word

• Finally, it’s the “flowers” whose 
location is important
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Adding Metadata to the Memory

• “Special Values”
– Uninitialized, error code, null

• Full/Empty bits
– And multiple flavors of “empty”
– Esp. “empty pending outstanding value”
– Greatly simplifies Producer/Consumer

• Forwarding 

• Locked

• Traps

• Especially interesting when aliased to 
thread state registers
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Full/Empty Bits & MPI

Ack. A. Rodrigues, SNL
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One Step Further: 
Allowing the Threads to Travel

• “Overprovision” memory with huge numbers of 
anonymous execution sites
– Place at bottom of, or near, memory

• Reduce state of a thread to a memory reference

• Make creating a new thread “near” some 
memory a cheap operation

• Allow thread to “move” to new site when locality 
demands

• Don’t require target to maintain code

Latency reduced by huge factors
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“Piglet” Processing 
At Base of Memory

Target Address Operands & Working Registers CodePC
Additional Data Payload

MANAGEMENT

PIGLET
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HEAVYWEIGHT
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PIGLET
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HOST CPU NODE

THREADLET FORMAT

ADDRESS
MANAGEMENT

PIGLET
PROCESSING

ADDRESS
MANAGEMENT

PIGLET
PROCESSING

Memory Bank

PIGLET
PROCESSING
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Types of Piglet Programs

• Classical memory operations

• Atomic Memory Operations

• Short Vector to Memory

• “Object-oriented” method evaluation at 
the object

• Small slices of programs
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Example: AMO
• AMO = Atomic Memory Operation

– Update some memory location
– With guaranteed no interference
– And return result

• Parcel Registers: A=Address, D=Data, R=Return Address
• Sample Code:

MOVE
L1: LOCK & LOAD
OP
STORE & RELEASE L1
SWAPRA
MOVE A
STORE
QUIT

Atomic Update “At the Memory”

Return Result

Bottom Line: 2 network transactions rather than up to 6!



57DoE/DoD Workshop, Nov. 29 2007

Vector Add (Z[I]=X[I]+Y[I]) via 
Threadlets
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Conclusions
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Conclusions
• (Hierarchical) Multi-core has taken over

– But clock rate will be limited by power
– And # of useable cores by contacts

• Simpler cores: more area/energy efficient
– But we can’t use all them in hierarchical architectures

• Latency will stifle single-thread performance
• Multi-threading provides better utilization

– But at an energy cost

• Pipelined/Array chips reduce need for off-chip 
bandwidth
– But then run into power-limiting clock problem
– And require 2D data/code partitioning of code

• Are there alternatives that don’t fix code to cores?

BEST HPC Architecture != Best commodity architecture
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A Personal Goal
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• Huge increase in silicon per board
• Level out power dissipation
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The Future

Will We Design Like This? Or This?
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