
Petascale Distributed Data Analysis

Important issues for mining massive biological data sets

High-dimensional

Need new methods that scale up with the number of dimensions

OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY

Dynamic

Most methods work with <u>static</u> data - Changes lead to complete re-computation

Computational Feasibility on a Teraflop Computer

Biological Data Growth Trend:

Genome Assembly300TB/genomeProtein Structure PredictionPetaByteSimulations of Bionetworks1000s of PBs

Algorithmic Complexity:

Calculate means Calculate FFT Clustering algorithms O(n) O(n log(n) O(n²)

Data size, n	Algorithm Complexity			
	n	n <i>log</i> (n)	n ²	n ³
1MB	10 ⁻⁶ sec.	10 ⁻⁵ sec.	1 sec.	11 days
100MB	10 ⁻⁴ sec.	10 ⁻³ sec.	3 hrs	31 millenia
10GB	10 ⁻² sec.	0.1 sec.	3 yrs.	10 ¹¹ x age of the Universe

Bottom line: Bigger Computers aren't going to solve our problems We need breakthroughs in modeling and simulation algorithms

OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY

