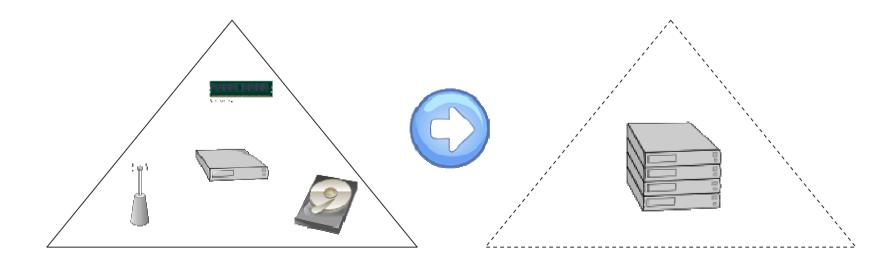


A Multiple Dimension Slotting Approach for Virtualized Resource Management

Fernando Rodríguez, Felix Freitag, Leandro Navarro Department of Computer Architecture Technical University of Catalonia

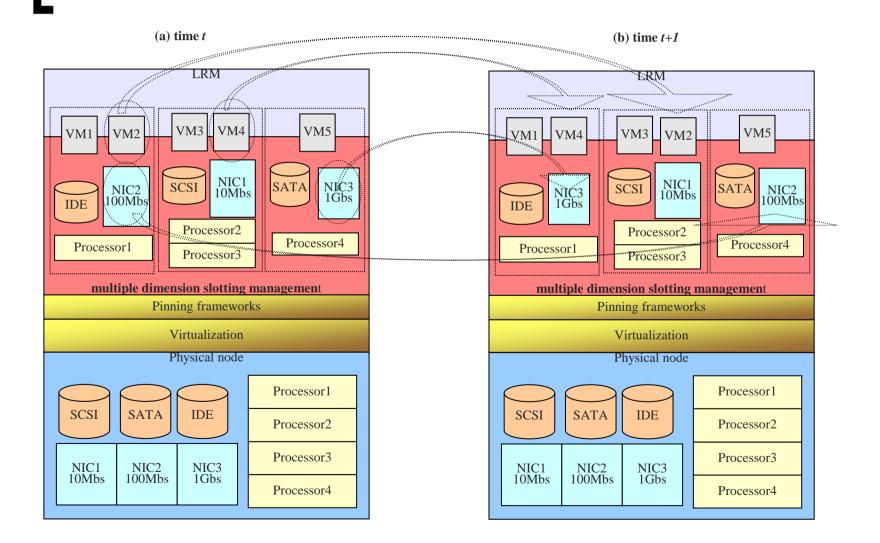

1st Workshop on System-level Virtualization for High Performance Computing (HPCVirt 2007) EuroSys 2007, March 20, Lisbon, Portugal

Outline

- Introduction
- MuDiS
- Experiments and results
- Conclusions

Context

- Virtualized resource management in HPC Grid
- Physical resources are multiplexed among Virtual Machines (VMs)
- Processors, NICs attached to different networks, disks


Introduction

- VMs are managed in the scope of the node's resource manager
 - O How do we decide the assignment of resources?
- Questions
 - O Is it possible to manage subsets of single physical resources and assign them to one or more than one VM?
 - O Is fine-grain management a solution to improve internal migration mechanisms?

Xen and Tycoon

- Xen
 - O Type I VMM that runs directly on top of the hardware and boots Dom0
 - O This domain is a privileged host OS that has access to the real hardware
 - O sEDF scheduler
 - Tycoon
 - O A market-based system for managing compute resources in distributed clusters.

MuDiS

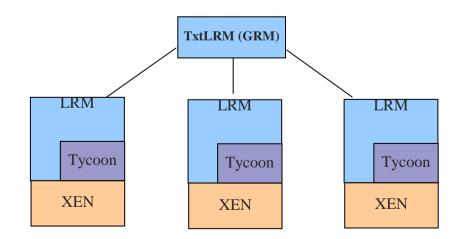
Prototype

Services via XML-RPC

TycoonAPI

 $\ensuremath{\mathsf{O}}$ creation, deletion, boot and shutdown of VMs

O weighting the resources with its bidding mechanism


MuDiS monitoring and management

O SMP aware

- CPU capacity management
- O Network aware and disk aware

disk capacity management

- network capacity management
- Security
- Scheduler
 - O job deployment component

txtLRM

Session Ec	lit View	Bookma	irks Set	ttings H	lelp	
LRM Client Menu:	Beta 0.1	L	: conne	cted to	0 147.83.30.	245
Processor	VM(ID)	share	Free	0wner	Status	Price
0	fabric1	0.5	False	True	running	1.495
0	fabric2	0.5	True	False	inexistent	1.495
1	fabric3	0.5	True	False	inexistent	1.495
1	fabric4	0.5	True	False	inexistent	1.495

Example of partitioning through LRM client interface

Hardware

Multiprocessor

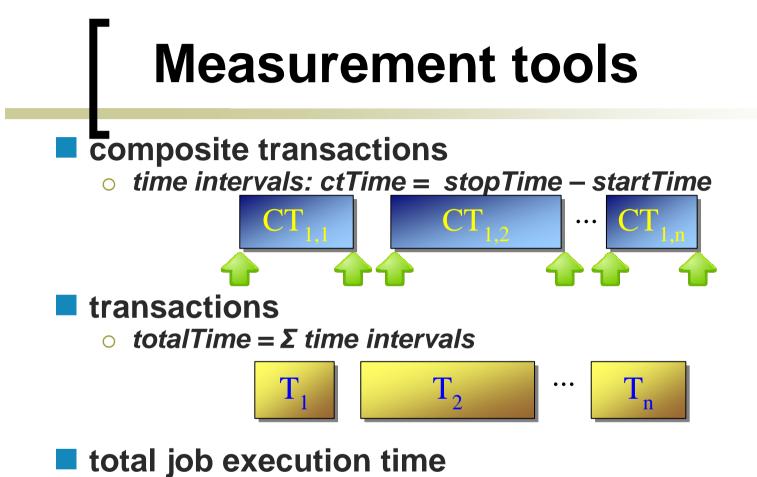
- Pentium D 3.00GHz (two processors),
- Hard disk (160GB, 7200 rpm, SATA)
- Network interface card is a Broadcom NetXtreme Gigabit.
- 1GB of RAM

Uniprocessor

- Laptop
- o processor Pentium IV M 3.06GHz
- Hard disk (60GB, 4200 RPM, Ultra-ATA/100)
- Network interface card is a BroadBand 440x 10/100.
- o 512MB of RAM

Software

- Software
 - Operating system is Fedora Core 4
 - System-level virtualization solution is Xen 3.0.2.
 - Tycoon client and auctioneer are 0.4.1 version.

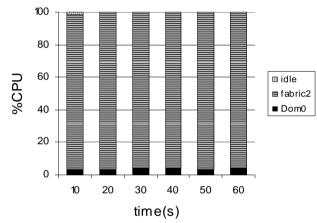

Workload

The workload used for experiments is an artificial model

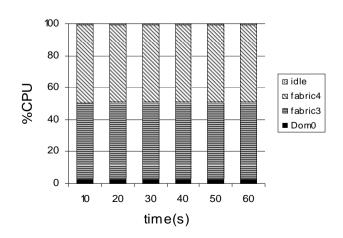
An application to stress the CPU O Task includes four subsets of different mathematical operations.

Jobs

- set of consecutive request/transactions
- running time (length) of the experiments is computed to be as close as possible to 60 seconds.
- o behave as those that are intensive processing.
- o 15 runs



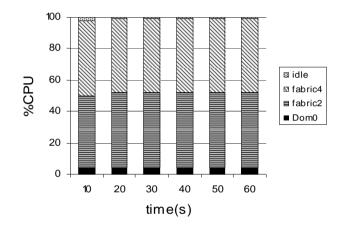
- o acumTime=acumTime+totalTime
- exit flag: while acumTime < 60 seconds



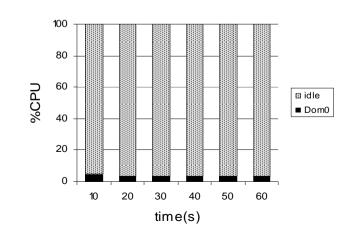
processor 0

Transactions per second achieved in each VM, all with equal share

VM	Tasks	Time	tps
fabric2	137.53	60.20	9.14
fabric3	70.40	60.29	4.67
fabric4	70.60	60.28	4.68

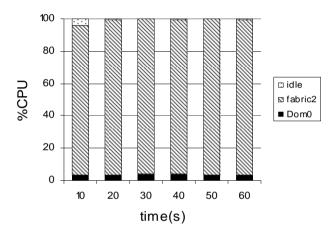


Second experiment (a)

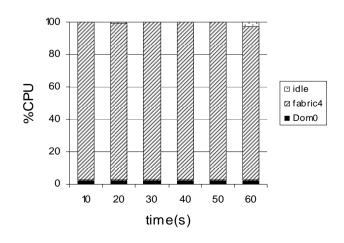

Both VMs are assigned to processor 0. Processor 1 has no assignment.

Benchmark results allocating 1.5GHz in each VM.

VM	Tasks	Time	tps
fabric2	69.47	60.41	4.60
fabric4	68.93	60.34	4.57

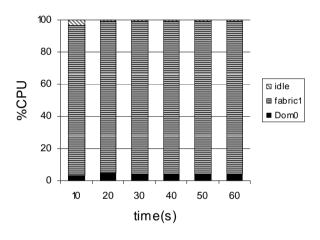


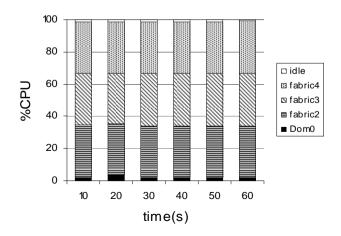
Second experiment (b)


First VM is assigned to processor 0, and the second VM is assigned to processor 1.

Benchmark results allocating 3.0GHz in each VM.

VM	Tasks	Time	tps
fabric2	135.80	60.22	9.02
fabric4	138.87	60.22	9.22




Third experiment

Allocation of four VMs: 1GHz, 1GHz, 1GHz, and 3GHz

VM	Tasks	Time	tps
fabric1	133.93	60.20	8.90
fabric2	45.13	60.57	2.98
fabric3	45.00	60.47	2.98
fabric4	44.93	60.54	2.97

processor 0

Uniprocessor node

Laptop with one Pentium IV M 3.06GHz

VM	Tasks	Time	tps
fabric1	136.67	60.18	9.08

Benchmark results allocating 3.0GHz

Conclusions

Physical resources were properly assigned
Performance measured in transactions per second was accurate and corresponded to agreed SLAs.

- MuDiS Adds a layer for the management of virtualized resources
- Better allocation of resources compared with the original system

Develop an enhanced version
O dynamic adaptation of assigned resources according to application behaviour