
High-Performance Hypervisor 
Architectures: 

Virtualization in HPC Systems

Ada Gavrilovska, Sanjay Kumar, Himanshu Raj, 
Karsten Schwan, Vishakha Gupta, Ripal Nathuji, 
Radhika Niranjan, Adit Ranadive, Purav Sarayia

College of Computing
Georgia Tech



Virtualization and HPC

• Virtualization technology major focus in 
enterprise settings
– power, cost, consolidation; manageability and 

portability… 
• Adoption lags behind in HPC domain

– fear of tapping into scare HPC platforms’ resources
– power, cost, consolidation – not critical constraints in 

HPC environments
• Our objective: understand feasibility and utility

– Is there room and need for virtualization in HPC? 
– As we move to many-core?
– Any new functionality/services?



Overview

• Potential benefits
• Sidecore approach to VMM architecture design

– Scalable hypervisor architectures for future many-core 
platforms

• Self-virtualizing devices (and accelerators)
– challenges and opportunities they present

• Platform management in virtualized 
environments

• Ongoing work targeting general purpose 
multicore systems, from low-end, personal 
platforms to high-end data center environments



Potential benefits

• Fault-tolerance: migration
• Fault-tolerance: monitoring
• Shared I/O and service nodes
• New functionality
• Portability and manageability
• Development, debugging and sharing
• Mixed use for capacity & capability computing

• => Worth further investigation… 



Sidecore Approach

• VMMs in many-core platforms
– coordinating VMM operations across many (80!) cores may 

introduce prohibitive noise levels and resource requirements
• Decompose VMM functionality

– factor select subsets of VMM operations and assign their 
execution to a designated core(s)

– eliminate or reduce expensive context/VMentry/VMexit
switches; exploit locality

– improve VMM scalability to number of cores
– Sidecore-resident functionality 

• factored out from monolithic VMMs (e.g., Xen)
• components in future modular/lightweight VMMs

• Architectural considerations
– number and location of sidecores
– VM core – Sidecore communication channels 



Page Table manipulation with 
Sidecore

Case study:
• Modified Xen 3.0 to designate 

page-table management to a 
designated sidecore

• VM entry/exit operation 
eliminated

• Communication: shared 
memory with polling

• Basic feasibility and 
understanding of challenges
– Evaluation challenge due to 

small core count on current 
platform



Benefits of eliminating VM-switches

• Up to 41% reduction in page table update latency



Self-Virtualizing Devices

• Device-level 
virtualization-awareness 
– Safely mux/demux access 

to device resources
– Associate self-virtualization 

functionality with device-
resident or device-near 
cores

– Challenges: 
• device-VM notifications -> 

interrupts vs. polling
• IOMMU operations



Self-virtualized NICs using the 
IXP2400 NP

IXP2400 NP

PCI Communication

Network

Controller
Domain

Guest 0 Guest 1

VIF0

Hypervisor

Host

Controller VIF1

VIFs

Controller



Interaction in an S-VNIC



Improvements in latency and 
bandwidth



Architectural limitations

Throughput of the PCI path Effects of virtual interrupt sharing



Insights for future multicore 
systems



Virtualized interrupts with 
Sidecore



Importance of S-V I/O

• Performance
– Hypervisor acceleration/bypass

• End-to-end QoS
• VM Migration & Device Remoting
• “Logical” Devices



SV-I/O and QoS support

• VM’s resource 
requirements 
need to include 
device-level 
resources

• Need for 
coordinated 
hypervisor- and 
device- level 
scheduling 
decisions

File Size 256Mb for Dom ratios 768_512_256

0

5000

10000

15000

20000

25000

64 128 256 512 1024 2048 4096 8192 16384
Record Size in KB

Th
ro

ug
hp

ut
 in

 K
B/

se
c

Dom1
Dom2
Dom3



Remote Device Virtualization

Hypervisor

Service
VM

NIC
Domain

Guest
VM

NIC
Domain

Service
VM

Hypervisor

Guest 
VM

BE FE

NIC vdevice NICdevice

FEBE

device 
driver

LAN/LAWNLAN/LAWN

- important for VM migration
- device-centric S-VIO -> data path through BE 

and NIC domain is pushed on device
- current numbers: ~11% latency reduction



• Device remoting
– feasibility and 

utility



“Logical” Devices

• Once a device is virtualized, there is no 
reason for it to be “real”

• May associate codes with S-V IO 
processing components to implement 
upper-level functionality
– Data reformating

• e.g., file system issues
– Filtering

• e.g., security/privacy issues, threshold 
comparisons…  

– QoS properties



• Case study:
– image 

reformatting



Other issues
• Device sharing among multiple virtualized 

platforms
– Cannot afford a single device domain to become 

hotspot
– S-VIO implements coordination and management 

functionality
• Monitoring and QoS

– Interface and support on device for monitoring and 
scheduling among virtual device instances (e.g., VIFs)

– Metadata management on S-V I/O
– Resource management in virtualized environments: 

• system-wide vs. platform-wide vs. VM- management 
objectives

• current primary consideration in our work power
– portable to other domain
– power may become relevant factor in HPC too – if the 

capabilities to control it are present



Conclusions
• Virtualization may have important contributions in HPC 

infrastructures
• Technical challenges to attain benefits 

– efficient hypervisor design to eliminate overheads and noise
– scalable hypervisors for multicore platforms
– Improved performance on I/O path
– Better support for device remoting, needed for efficient VM 

migration
– Ability to instantiate ‘logical’ devices and better meet 

application requirements
– Finer grain support for ensuring end-to-end QoS
– Grater scalability for shared virtualized devices
– Coordinated management (e.g., power?) mechanisms

• Prototype realization of a S-V NIC
– Gives us insights into access and control APIs

• Proof of concept concept results
– Efficient & scalable Hypervisor  for target platforms




