
High-Performance Hypervisor Architectures:
Virtualization in HPC Systems

Ada Gavrilovska Sanjay Kumar Himanshu Raj Karsten Schwan
Vishakha Gupta Ripal Nathuji Radhika Niranjan Adit Ranadive Purav Saraiya

Center for Experimental Research in Computer Systems (CERCS)
Georgia Institute of Technology

Atlanta, Georgia, 30332
{ada, ksanjay, rhim, schwan, vishakha, rnathuji, radhika, aranadive, purav}@cc.gatech.edu

Abstract
Virtualization presents both challenges and opportunities for HPC
systems and applications. This paper reviews them and also offers
technical insights into two key challenges faced by future high-
end machines: (1) the I/O challenges they face and (2) the multi-
core nature of future HPC platforms. Concerning the latter, we
argue the need to better structure virtualization solutions, to im-
prove the compute experience of future HPC applications, and to
provide scalability for virtualization solutions on future many-core
platforms. Concerning (1), we present new methods for device vir-
tualization, along with evidence that such methods can improve the
I/O performance experienced by guest operating systems and ap-
plications running on HPC machines. Experimental results validate
the claims made in (1) and (2), attained with the Xen hypervisor
running on modern multi-core machines. Finally, the paper offers
new directions for research in virtualization for HPC machines.
It describes ways for further improving the effective I/O perfor-
mance as seen by HPC applications by extending virtualization to
associate application-relevant functions with I/O data streams and
through QoS support for these streams. Other issues discussed are
reliability enhancements for I/O, and online system and resource
management.

Categories and Subject DescriptorsD.4.7 [Operating Systems]:
Organization and Design; C.2.4 [Computer-Communication Net-
works]: Distributed Systems; C.5.1 [Computer System Implemen-
tation]: Large and Medium Computers

General Terms Design, Performance, Management, Reliability

Keywords Virtualization, High-performance Computing, Multi-
core Platforms

1. Introduction
Background. Distributed computing infrastructures are becom-
ing increasingly virtualized, a principal purpose being to make it
possible to safely share them across multiple applications, services,
or even different application components. For instance, datacen-
ter providers, such as Amazon’s Elastic Compute Cloud (EC2) [2],
rely on virtualization to consolidate computational resources (e.g.,
cluster or blade servers) for applications from different customers,
or to safely provide different kinds of services on the same un-
derlying hardware (e.g., trading systems jointly with software per-
forming financial analysis and forecasting). In these contexts, vir-
tualization provides several key benefits: (1) consolidation offers

HPCVirt ’07 March 20, 2007, Lisbon, Portugal.

improved resource utilization, which is of particular importance in
emerging multi-core platforms; (2) application portability is im-
proved, without requiring additional development efforts; and (3)
virtualization enables a rich variety of system management and
migration-based approaches to improve load balancing and fault
tolerance, the latter becoming critically important with rapid in-
creases in platform and system sizes and complexity and with the
consequent increase in failure probabilities.

Current virtualization methods exploit a combination of hard-
ware (i.e., Intel VTD, AMD Pacifica) and software mechanisms,
such as binary rewriting and para-virtualization [3], and they use a
hypervisor or virtual machine monitor (VMM) to effectively virtu-
alize and manage the system. Further, virtualization concerns the
entire computing platform, including core architectural resources
such as CPU and memory, peripherals and communication infras-
tructure, and it can leverage additional hardware or software sup-
port for efficient device sharing and access [19, 12]. Examples
of the latter include routers and switches supporting VLANs with
which end user systems can establish what appear to be dedicated,
private communication infrastructures across local area networks,
Infiniband hardware and associated software stacks that make it
possible to share the same physical network across multiple end
points and also, to service a mix of Infiniband- and TCP/IP traf-
fic [15]. The new GENI NSF initiative for development of a global
environment for network investigation [9] recognizes the impor-
tance of virtualizing the network infrastructure as a vehicle for in-
novation. Finally, accompanying management infrastructures are
emerging [24], to simplify or even automate the use of large-scale
virtualized systems.
Virtualization in High Performance Systems.While virtualiza-
tion has gained significant momentum in the enterprise domain, for
consolidation, cost and power reduction, ease of management, im-
proved fault-tolerance and RAS properties, its adoption in the high
performance domain remains lagging. The purpose of this paper is
to identify and discuss how virtualization technology can deliver
qualitative and quantitative benefits to high-performance applica-
tions and machines. Toward this end, we present specific efforts
undertaken by our group that aim to deliver these benefits. These in-
clude (1) lightweight and scalable VMM solutions, particularly for
future many-core platforms, (2) efficient and extensible device-near
or device-level I/O virtualization services, and (3) low-overhead
platform monitoring and analysis support for use by higher level
methods for improved system reliability and performance.

A key reason why the use of virtualization has so far bypassed
the scientific HPC domain is that while enterprise applications typ-
ically permit high levels of resource sharing, the applications run-
ning on high-end ‘capability’ systems [20, 6] seek to fully exploit



machine resources (e.g., memory, CPU, memory bandwidth, etc).
To enable this, the operating systems on those machines [6] pro-
vide only minimal OS-level functionality, essentially exporting un-
derlying resources to applications and permitting applications to
entirely handle the ways in which these resources are used. This
prevents operating systems from tapping into the underlying criti-
cal resource budget and/or from perturbing the application’s oper-
ation in unexpected ways [18]. Concerning virtualization, then, the
principal concerns in the HPC domain are (1) whether virtualized
resources can deliver the performance comparable to physical ones
and (2) whether virtualization methods will introduce the unpre-
dictable platform behaviors already seen in general guest operating
systems [18, 7]. Further, (3) consolidation benefits are unclear, even
for future many-core platforms with multiple tens or even hundreds
of computational cores.
Overview of Paper. In the remainder of this paper, we first iden-
tify potential benefits of virtualization for high performance sys-
tems and applications. Next, we present our group’s efforts toward
scalable VMMs for multicore machines, virtualization for high-
performance I/O and proactive fault-tolerance, and extensions in
system functionality relevant to HPC applications.

2. Virtualization and High Performance: Benefits
and Challenges

Virtualization introduces additional flexibility into the execution
environments used by high performance applications. This flexi-
bility can be used to address important issues faced by future peta-
scale applications:
1. Fault-tolerance: Migration.In HPC systems, the costs of appli-
cation failure and restart are significant. With the move to petas-
cale systems, these costs will rise further, requiring system de-
velopers to seek new reliability solutions (e.g., proactive fault-
tolerance [23]). Virtualization is a key enabler for implementing
the migration methods needed by fault-tolerance solutions, since
each VM cleanly encapsulates the entire application, library, and
OS state to be migrated.
2. Fault-tolerance: Monitoring.Pro-active fault-tolerance solutions
require continuous system monitoring, including platform-level
functionality for monitoring hardware components, application be-
havior and data integrity. Virtualization makes it possible to isolate
application workloads and their needs from the control and man-
agement functionality needed to implement these solutions, with-
out the need for specialized management hardware or software.
3. Shared I/O and service nodes.A key limiting factor for future
machines is their ability to perform I/O. Here, virtualization can be
of particular benefit to those nodes on high performance machines
that are already (or that should be) shared by applications, as
with I/O and service nodes. Their robustness can be improved by
separating their onboard functionality for interacting with devices,
for running system management tasks, and for doing so on behalf
of different applications or application data streams (e.g., critical
vs. non-critical I/O).
4. New functionality: Extended I/O services.Given the isolation
mechanisms typically implied by virtualization, the I/O datapath
can be extended with additional functionality. Examples include
system level functionality like support for monitoring communica-
tion patterns, remote memory or device accesses, or system check-
pointing, or higher, application-driven services, such as filtering,
data staging, metadata management, etc. The former can be used to
predict failures or capture undesirable performance behavior. An-
other example is to provide Quality of Service (QoS) support for
separating the I/O streams of multiple or even single applications
(e.g., preference given to critical checkpoints over additional I/O,
desirable for faster restarts). The latter can provide improved ser-

vices to applications, without requiring them to be rewritten or re-
organized.
5. Portability and Manageability.Virtualization makes it possible
to execute different application mixes along with required run-time
systems in separate VMs on the same underlying physical plat-
form. This enables end users to continue to use existing applica-
tions while upgrading to new systems or libraries or to easily com-
pare new versions with older versions. Further, certain end users
might simply continue to use older versions and systems, perhaps
because of their reliance on ancillary functionality (e.g., for relia-
bility management) that would otherwise be costly to port to newer
system versions.
6. Development, debugging, and sharing.An interesting opportu-
nity with virtualized systems is to ‘debug at scale’, that is, to create
‘test’ partitions that extend across all nodes of the HPC machine,
thereby permitting end users to scale their test runs to the sizes
needed to validate scalability and/or other size-sensitive applica-
tion behaviors. This can be done while at the same time making the
machine available for other capacity runs. Another interesting op-
portunity is to strongly separate trusted from untrusted codes, again
on the same underlying physical hardware.
7. Mixed use for ‘capability’ and ‘capacity’ computing.The con-
currency properties of future many-core platforms remain unclear,
including their memory hierarchies, cache sharing across cores, re-
dundancies and/or capacities of on-chip interconnects, core hetero-
geneity, etc. Virtualization provides a ‘hedge’ against the poten-
tially negative (for large scale parallel applications) implications of
such developments, making it possible to highly utilize a machine
while applications are being improved, by enhancing existing ma-
chine partitioning methods with additional methods that partition
the cores on individual nodes.

We next provide evidence to validate some of the statements
made above, based on our experimental work with the Xen hy-
pervisor on multi-core platforms. Our particular contributions con-
cern VMM scalability to many-core machines, opportunities de-
rived from virtualization for high performance I/O and proactive
fault tolerance, and extended system functionality useful for HPC
applications enabled by virtualization.

3. Scalable Hypervisors for Many-core Platforms
Current hypervisor (VMM) designs are monolithic, with all cores
in the system executing the same VMM functionality. For future
many-core platforms, this approach will introduce significant per-
formance overheads due to increased costs of synchronized opera-
tions and frequent processor state switches (e.g., the VMexit oper-
ation in Intel’s VT architecture) and accompanying effects of cache
pollution and TLB trashing. An alternative approach to organizing
VMMs is the sidecoreapproach evaluated in our research, where
a VMM is structured as multiple components, each responsible for
certain functionality, and each component assigned to a separate
core in the many-core platform. The remainder of this section dis-
cusses the performance benefits attained with this approach for rep-
resentative VMM functionality.

New processor architectures offer explicit hardware support for
running fully virtualized guest operating systems – hardware vir-
tualized machines (HVMs). HVMs are not aware of the fact that
they are running on virtualized platforms, and so, hardware sup-
port is needed to trap privileged instructions. HVM hardware, then,
is comprised of mechanisms that implement the traditional trap-
and-emulate approach. On Intel’s VT architecture, these mech-
anisms are termed VMexit and VMentry, and they are invoked
during VM-to-VMM and VMM-to-VM switches, respectively. Al-
though guests need not be rewritten, a disadvantage is that trap-
and-emulate has substantial overheads [1].



Figure 1. Page Table Updates with Sidecore.

The sidecoreapproach can be used to avoid the use of costly
VMexit or VMentry operations, particularly on those nodes that run
performance-sensitive application codes. In this approach, VMM
functionality is mapped to designated core(s), and VM-VMM calls
use one of these ‘side’ cores via efficient VM-VMM communica-
tions (i.e., currently using shared memory, but in the future, ex-
ploiting the core-core communication mechanisms now being de-
veloped for many-core architectures). Next, we present a concrete
example of such a VMM functionality, page table management, for
which the sidecore approach yield significant advantages.
Page Table Updates.The Xen hypervisor maintains an additional
page table, a shadow, for every page table in the HVM guests.
The hardware uses these shadow page tables for address translation
and therefore, changes to page tables made by guests have to be
propagated to the shadow page tables by the Xen VMM. In the
current implementation a typical page fault causes two VMexits
and two VMentries.

The sidecore approach reduces the number of VMentries and
VMexits to one. Our implementation of this approach was done on
a dual-core X86-64 bit, VT-enabled system. One core acts as the
sidecore, and the other core runs both dom0 and all other VMs.
When the HVM domain boots, it establishes a shared page with
the sidecore to be used as a communication channel. The sidecore
spin waits for HVM domain requests, and the domain’s page fault
handler code is modified so that instead of updating the guest page
table itself (which would cause VMexit), it makes a request to the
sidecore, providing the faulting address and the page table entry
values (see Figure 1). Since the sidecore already runs in VMM
mode, this process avoids the VMexit. The sidecore updates the
guest page table, propagates the values to the shadow page table
and returns control to the HVM domain.

We have compared the latency of performing three types of
operations with the traditional trap-based methods vs. our sidecore
approach: (1) for making a ‘Null’ call, (2) for obtaining the result
of the privileged CPUID instruction, and (3) for performing page
table updates, as described in detail earlier. The initial experimental
results show average improvements in call latency of 41%.

From these results, it is apparent that the costs of state changes
on cores are large, making it preferable to use a different core that
already resides in the appropriate state. In addition, by using this
approach, it is possible to reduce or avoid VMM noise [18, 7], that
is, unpredictable delays in program execution in high performance
parallel applications due to VMM-level activities. We are currently
measuring the performance effects of this work on various server-
and HPC-based applications.

A shortcoming of our current, prototype implementation of the
sidecore approach is the spin-wait regime we are using, which un-

necessarily wastes sidecore cycles due to CPU spinning. This can
be alleviated via energy-efficient polling methods, such as the mon-
itor/mwait instructions available in recent processors or via direct
addressed caches [26]. This approach does require minor modifi-
cations to the guest OS kernel and presents similar performance-
intrusiveness tradeoffs like paravirtualization approaches.

3.1 Benefits to HPC Hypervisors

We argue that sidecores are a viable approach to architecting
VMMs in HPC environments, particularly as we move toward the
increased hardware concurrency of future many-core platforms.
It is very likely that due to constraints such as memory size and
memory- or I/O-bandwidth, applications will not always be able to
utilize all cores. Such additional cores are suitable candidates for
executing VMM components. Another argument for the sidecore
approach can be derived from prior work on lightweight operating
systems for HPC machines [5]. We argue that such lightweight OSs
are similar in character to the customized sidecore VMs used in our
approach. Finally, it is likely that future many-core platforms will
combine substantial on-core resources with complex memory hier-
archies. Avoiding state changes prevents loss of on-chip state and
the consequent loss of performance. Complex memory and cache
hierarchies can be leveraged to reduce or eliminate any ‘noise’ ex-
perienced by high performance applications by VMM functions
running on other (i.e., ‘side’) cores.

Finally, to improve the scalability of the sidecore approach on
future many core platforms, such as the 80-core chipsets under con-
sideration by industry research labs [13], first multiple sidecores
can be deployed, each executing a designated subset of VMM oper-
ations, and second, a signle sidecore functionality can be replicated
and deployed onto multiple platform cores, in a manner which takes
into consideration the topology and the properties of the on-chip
interconnect, and the trade-offs between sidecall latency and syn-
chronization costs among the sidecore replicas.

4. Efficient Virtualized I/O
In current virtualized systems, e.g., those based on the Xen VMM,
I/O virtualization is typically performed by a ‘driver’ domain. This
is a privileged VM that has direct access to the physical device.
For ‘smart’ devices with onboard processing capabilities, an al-
ternative is to offload parts of the I/O virtualization functionality
from the driver domain onto the device itself. These devices, here-
after termedself-virtualized I/O devices, can provide a direct, low-
latency I/O path between the guest VM and physical device with
minimal VMM involvement. This model of VMM bypass provides
improved performance and scalability [19, 15], much like earlier
work on direct application-level access to devices. Hardware sup-
port for self-virtualized devices, is already available in high end
communication devices like Infiniband network adapters [15], and
leveraging its full potential requires appropriate changes at the
VMM, OS, and I/O interconnect levels. Industry thrusts toward
virtualization-friendly interconnection technologies (e.g., Hyper-
Transport, Geneseo, SIGVIO) will further improve the efficiency
of VM-device interactions and reduce the need for VMM involve-
ment in device I/O.

We next present results that validate the statements above, based
on experimental work that extends the default data movement capa-
bilities of high end devices (i.e., network interface cards and disks).
The purposes are (1) to improve the performance of device access
by VM’s, (2) to attain transparency in sharing local and remote de-
vices among multiple hosts, and (3) to offer a richer set of data
movement services beyond the raw block or stream outputs origi-
nally supported by these devices.



1 2 4 8 16 32
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

total number of concurrent guest domains

la
te

nc
y 

(m
s)

SV−NIC VIFs
HV−NIC VIFs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 2. Latency of HV-NIC and SV-NIC. Dotted lines represent
the latency for dom0 in two cases: (1) No virtualization functionality
(i.e., without software bridging), represented by fine dots, and (2)
Virtualization functionality for HV-NIC (i.e., with software bridging),
represented by dash dots.

1 2 4 8 16
0

100

200

300

400

500

600

700

800

900

total number of concurrent guest domains

ag
gr

eg
at

e 
th

ro
ug

hp
ut

 (M
bp

s)

SV−NIC VIFs
HV−NIC VIFs

0

100

200

300

400

500

600

700

800

900

Figure 3. TCP throughput of HV-NIC and SV-NIC. Dotted lines
represent the throughput for dom0 in two cases: (1) No virtualization
functionality (i.e., without software bridging), represented by fine dots,
and (2) Virtualization functionality for HV-NIC (i.e., with software
bridging), represented by dash dots.

4.1 A Self-Virtualized Network Interface Card

In order to evaluate the potential of future self-virtualized de-
vices, we have implemented a self-virtualized network inter-
face (SV-NIC) using an IXP2400 network processor-based pro-
grammable gigabit ethernet board. This SV-NIC provides virtual
network devices, hereafter termed as VIFs, to guest VMs for net-
work I/O. A guest VM enqueues packets on a VIF’s send-queue
and dequeues packets from its receive-queue. The SV-NIC mul-
tiplexes/demultiplexes VIFs on the physical network device. We
contrast the self-virtualized NIC approach with the ‘driver do-
main’ approach used by the Xen hypervisor, also referred to as
HV-NIC. The driver domain implements virtual device interfaces,
e.g., a virtual block device or a virtual network interface, exported
to other guest domains. The driver domain also implements the
multiplex/demultiplex logic for sharing a single physical device
among multiple virtual interfaces, the logic of which depends on
the properties of the device. For instance, time sharing is used for
the network interface, while space partitioning is used for storage.
The hypervisor schedules the driver domains to run on general
purpose host cores. In case of ‘driver domains’, regular IA-based
core(s) implement all necessary virtualization functionality, while
the self-virtualized NIC implements this functionality on the device
itself, using processing elements ‘close to’ physical devices, e.g.,
the micro-engines in IXP-based platforms.
Initial Results. The experiments reported in this section compare
the two approaches mentioned above for network virtualization:
the HV-NIC approach and the SV-NIC approach. They are con-
ducted on dual 2-way HT Pentium Xeon (a total of 4 logical pro-
cessors) 2.80GHz hosts, with 2GB RAM, each with an attached
IXP2400-based card. The hypervisor used for system virtualization
is Xen3.0-unstable. We use the default Xen CPU allocation policy,
under which dom0 is assigned to the first hyperthread of the first
CPU, and the Borrowed Virtual Time (bvt) scheduler with default
arguments is the domain scheduling policy used by Xen (see [19]
for additional detail).
Latency.Latency measurements are represented in Figure 2 and
include both basic communication latency and the latency con-
tributed by virtualization. Virtualization introduces latency in two
ways. First, a packet must be classified as to which VIF it belongs
to. Second, the guest domain owning this VIF must be notified.
Based on the MAC address of the packet and using hashing, clas-
sification can be done in constant time for any number of VIFs,
assuming no hash collision.Our results demonstrate that with the

SV-NIC approach, it is possible to obtain close to a 50% latency
reduction for VIFs compared to Xen’s current HV-NIC implemen-
tation, which constitutes one of the main motivation for the efficient
virtual I/O approach advanced in this paper. This reduction is due
to the fact that dom0 is no longer involved in the network I/O path.
In particular, the cost of scheduling dom0 to demultiplex the packet,
using bridging code, and sending this packet to the frontend device
driver of the appropriate guest domain is eliminated on the receive
path. Further, the cost of scheduling dom0 to receive a packet from
guest domain frontend and to determine the outgoing network de-
vice using bridging code is eliminated on the send path. Also of
interest is that the approach scales to a larger number of guest do-
mains, a fact that is of particular importance for future many-core
platforms.

The significant increase in latency for 32 VMs in Figure 2 is
due to a limitted number of bits (eight) in our current platform’s
interrupt vector. As a result, multiple VM identifiers must share
a signle interrupt vector bit, and the demultiplexing process may
results in repeated context switches. This increases both the latency
and its variability as the number of domains per bit increases. In
the next section we discuss one approach to eliminate some of
these costs on platforms with hardware limitations in the interrupt
identifier. Interconnects such as PCIExpress or HyperTransport
may further reduce these costs, due to their more flexible signalling
protocol.
Throughput.Figure 3 shows the throughput of TCP flow(s) reported
by iperf for SV-NIC and HV-NIC. Based on these results, we make
the following observations. First, the performance of theHV-NIC is
about 50% of that of the SV-NIC, even for large numbers of guest
domains. Several factors contribute to the performance drop for the
HV-NIC, as suggested in [17], including high L2-cache misses,
instruction overheads in Xen due to remapping and page transfer
between driver domain and guest domains. In comparison, the SV-
NIC adds overhead in Xen for interrupt routing and for overhead
incurred in the IXP NIC for layer-2 software switching. Another
important observation is that the performance of theHV-NIC for
any number of guests is always lower than with a single VIF in
SV-NIC.

In addition to the IXP-based implementation of the SV-NIC,
we have experimentally validated the utility of the approach with a
host-centric implementation, where the device virtualization func-
tionality is fully executed in an efficient implementation of the
‘driver domain’ on a designated core, and have also considered the



1 2 4 8 16 32
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

total number of concurrent guest domains

la
te

nc
y 

(m
s)

SV−NIC w/o Sidecore
SV−NIC with Sidecore

Figure 4. Interrupt Virtualization with Sidecore.

tradeoffs of polling vs. virtualized interrupts. Due to space con-
straints, we do not discuss this in further detail.

4.2 Impact on Hypervisor/VMM

Self-virtualized Devices and Sidecore.While the benefits and the
potential of the self-virtualized approach of designating dedicated
cores for executing device-near functionality are evident from the
above results, they can be further improved by integrating them
with the sidecore mechanism described in Section 3. Namely, a tra-
ditional monolithic VMM implementation, even in the presence of
hardware supported VMM-bypass has to rely either on polling or
on the efficient virtualization of the device interrupt. One possible
approach to eliminate the overheads of polling and minimize the
costs of interrupt virtualization is to factor out the VMM function-
ality responsible for interrupt virtualization to a designated core.
Figure 4 shows the additional reduction in latency due to the use
of the sidecore approach, as compared to the latency measurements
depicted in Figure 2. This significantly improves the scalability of
the system.
QoS-aware Virtualized IO. In order to ensure expected quality
properties of I/O data movements, it is necessary to be able to as-
sign and even dynamically manage QoS attributes associated with
distinct virtualized I/O flows. Combining QoS with I/O virtualiza-
tion is necessary for simple uses of I/O in HPC applications, such
as its use for critical checkpoints (i.e., for restarts) vs. its use for
‘desired’ data (e.g., for online data visualization). Further, in gen-
eral, it has been found useful to adjust the frequency and thus, the
QoS of such reliability services, including online monitoring, based
on failure likelihood, as predicted by platform- or system-level risk
models. Finally, dynamic QoS for I/O is a useful mechanism for
applications with highly dynamic I/O patterns, so as to best utilize
the I/O resources associated with HPC machines. In fact, the In-
finiband architecture already supports the dynamic assignment to
I/O QoS-levels, by exposing APIs to manage Service Level (SL)
to Virtual Lane (VL) maps. Current work in our group is develop-
ing an even richer set of mechanisms and APIs for the prototype
IXP-based SV-NIC described above.

An interesting insight derived from our work with QoS for I/O is
that the device-level QoS-based allocations of devices’ processor,
memory, and other resources have to be coupled with accompany-
ing VMM-level scheduling actions. Experimentation with virtual-
ized Infiniband infrastructures indicates that without careful con-
sideration of the VMM’s scheduling policies, the QoS-guarantees
which should be supported via SL-to-VL mappings do not always
translate to corresponding QoS levels as observed by respective
VMs. The first three rows presented in Table 1 show the read band-
width observed for a particular SL-VL mapping for a single pair

SL-VL Mapping & Priority Peak Bandwidth (MB/s)
SL0:VL0 (high) 938.6
SL1:VL1 (low) 938.63
SL5:VL5 (low) 938.43
SL0:VL0 (high) 700 - 938
SL1:VL1 (low) 432 - 932
SL5:VL5 (low) 465 - 927

Table 1. Read Bandwidth on Xen virtualized Infiniband platforms.

of communicating VMs on two different nodes virtualized with
Xen. The next three rows present the bandwidth data gathered when
multiple VMs communicate at different hardware- (i.e., IB-) sup-
ported QoS levels. We observed that applications/VMs mapped to
high-priority VLs achieve the possible bandwidth peaks more often
than those mapped to low-priority VLs, though the behavior is not
consistent and exhibits significant fluctuations. These variations are
primarily contributed to the lack of quality-awareness exhibited by
the Xen scheduler and lack of coordination with the device-level
scheduling actions.

A similar need for improved VMM co-scheduling is also de-
rived from a set of microbenchmarks of storage- and communica-
tion-intensive applications on virtualized multi-core platforms run
in our lab. The measurements presented in Figure 5 include one
example of our observations. Three guest domains (dom1 - dom3)
run the Iozone file system benchmark. Using the credit-based Xen
scheduler, the domains are assigned weights of 768, 512 and 256
respectively, which translates into the proportion of CPU time Xen
will grant to each of the domains. However, the performance levels
exhibited by their I/O opeartions are not proportional to the do-
mains’ priority levels, as suggested by the scheduling weights. In
fact, the highest priority domain, dom1, for the most part experi-
ences lowest throughput levels for its file system operations. For
brevity, here, we limit the treatment of this topic to conclude that
QoS-aware scheduling at the device and VMM scheduler-levels
are important elements of future virtualized high performance plat-
forms. Our current work is continuing to investigate this topic.

4.3 From Device to Data Virtualization

Virtualized devices offer interesting opportunities for further gen-
eralizing what it means to ‘access’ or ‘use’ a device. Examples in-
clude ‘remoting’ a device, where the platform-resident guest is not
aware of the device’s actual location, thereby making it easier to
implement reliability functionality like VM migration. Industry is
considering functionality like this for PCI devices to improve pack-
aging for blade servers. Researchers have addressed the utility of
remote memory for pro-active fault-tolerance solutions [23, 12]. In
addition, we are considering ‘logical’ device extensions, such as
those that automatically filter application data to reduce HPC data
volumes, or those that monitor data movements and create meta-
data, e.g., to assist applications in high performance I/O. Other
work has addressed data virtualization at a higher level for specific
classes of HPC applications like data mining [25].
Device Remoting.We next present some initial results on ‘logical’
devices. In this work, we have developed a set of methods for trans-
parent device remoting (TDR), which extend the capabilities of the
local networking device and its associated processing components,
thereby permitting local OSes to logically perform data accesses
to a remote device of a different kind (e.g., disk, USB, camera).
These methods are important in order to assist with uninterrupted
device access during VM migration or device hot-swapping (e.g.,
such as during proactive VM migration to prevent node failures in
HPC systems).



File Size 256Mb for Dom ratios 768_512_256

0

5000

10000

15000

20000

25000

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Record Size in KB

Th
ro

ug
hp

ut
 in

 K
B

/s
ec

Dom1

Dom2

Dom3

Figure 5. File I/O performance with different weights assigned to
each of the three guest domains.

Figure 6. Effects on cumulative throughput of block devices with
increasing number of Iozone executions.

Although we have analyzed device remoting for multiple de-
vices, we only include a few representative results to illustrate the
overheads and importance of remote disk access, particularly for
continuous operation during VM migration. The current implemen-
tation is based on multi-core systems virtualized with the Xen hy-
pervisor.

We first analyze the feasibility of lightweight remote device ac-
cesses using a microbenchmark measuring throughput with mul-
tiple parallel iozone file IO benchmarks for the ext3 file system.
We compare the throughput achieved through accessing local disk,
network block device (NBD), and Remote Virtual Block Device
(RVBD), where the latter is built using the TDR methods developed
by our group (see Figure 6). The use of multiple parallel iozone
benchmarks is due to the inefficiency with which a single bench-
mark issues IO requests, which results in low network utilization.
Clearly, as the number of parallel iozone executions increases, the
RVBD throughput increases and saturates only when it reaches the
maximum throughput our implementation can currently sustain for
block devices. Local VBD does not show any significant increase
because it already is at its maximum throughput. The throughput of
RVBD is constantly at or above the NBD level, and it reaches up to
75% of the local VBD performance. In addition, it can be further
enhanced with methods such as buffer caching. More importantly,
the use of transparent methods can make guest VMs entirely un-
aware of device location – an important feature for VM migration.

The results in Figure 7 show the effect of RVBD during VM
migration on total throughput levels for a simple multi-machine
application. During migration, the VM continues to access the
remote disk, where its state is originally residing, until it gets
pushed and synchronized with the state on the new host (completed
at the ‘Hot Swap’ point in Figure 7). While there is some drop
in throughput (for the most part, reduced by 28%, with a more
significant drop for less than 115ms), the total duration of this
phase is 6s, compared to over 40s interval needed for the disk
hot-swap to complete. During the remaining time, the remote disk
access exhibits the same throughput levels as the throughput for
local disk access before VM migration. The application used in
these measurements is a pipeline-based set of services used by large
numbers of client requests. Our future work will explore migration
effects on complex parallel codes.
Data Virtualization Services.Our research is also addressing the
need to extend data I/O operations with new functionality to access,
interpret, or otherwise manipulate application data as it is being
pushed from sources to destinations [8, 14, 27], thereby ‘virtualiz-
ing’ the original data stream, and providing to end-users only the
content of current importance. Our prior work [8, 14] has demon-

strated that such data virtualization tasks can easily be coupled
with the default receive and transmit operations. Results demon-
strate significant gains for a wide range of operations – from online
content-based filtering, to format translation, to even computation-
ally intensive tasks such as performing customized image manipu-
lations, as needed in HPC visualization applications. We have also
determined that extensions to the I/O data path are suitable for ex-
ecution on device-level cores (i.e., programmable NICs or NPs), or
on designated cores in many-core platforms.

For instance, the results in Figure 8 demonstrate the perfor-
mance gains attainable by ‘virtualizing’ the original output from a
molecular dynamics (MD) simulation, so that it contains only those
portions of the experiment’s output that are of current interest to
the MD scientists. To enable this, image manipulation (e.g., crop-
ping) operations are applied to the original data stream, and their
execution can be deployed on cores on the general purpose nodes
(e.g., on the I/O or service nodes), or on I/O devices associated with
these nodes. In the experiment illustrated in Figure 8, we compare
the performance when executing the image cropping operations on
these two platforms – general purpose core vs. device, where the
device is a programmable IXP network processor, used as an ex-
ample of a future smart NIC. From these results, we conclude (1)
that even complex data virtualization actions are suitable for ex-
ecution with I/O data movements, and (2) that using application-
specific codes to customize the I/O data can improve the overall
ability to deliver end-to-end quality levels, by permitting the use of
critical resources (e.g., bandwidth to scientists’ display) to be used
in a manner most suitable for the application and its end-users’ cur-
rent needs. In addition, (3) we observe that the exact placement of
application-specific data virtualization codes should be done with
consideration of both platform capabilities (e.g., bandwidth of I/O
interconnect, current CPU loads) as well as the properties of the
executed codes and the data currently being manipulated.

As with the arguments for our sidecore approach, future many-
core HPC systems are likely to have available cores not used for
core application components, which can be appropriate for exe-
cution of tasks that convert data to better match the applications’
outputs to the scientists’ needs. Using lower-level system virtual-
ization mechanisms to enable these types of data-virtualization ser-
vices is particularly suitable, as new functionality can be embedded
into separate VMs, and its impact to other application components
can be thereby isolated and controlled.

4.4 Benefits of I/O Virtualization in HPC

HPC platforms can make use of self-virtualized devices in multiple
settings. Their utility is apparent for I/O and service nodes: to sep-



Figure 7. Effects on throughput of VM migration.

host w/ load

host w/o load

IXP w/o load

IXP w/ load

host

IXP

Figure 8. Importance/Feasibility of Data virtualization.

arate the services provided to different applications, for instance.
Virtualized devices can be accessed even while applications mi-
grate across nodes to avoid failures or when multiple applications
share a single large machine. Virtualization can also deliver pre-
dictable levels of QoS for I/O services, a key element in making fu-
ture HPC systems suitable for large-scale applications. On I/O and
service nodes, auxiliary services can be run in isolated fashion, each
serving different applications, again offering differential levels of
QoS. Finally, due to the overwhelming data volumes and costs and
lengths of simulation runs even on current HPC machines, science
end-users are now requesting access to lightweight I/O services –
sampling, filtering, re-prioritizing, or system services like check-
pointing, data staging and I/O scheduling. The ability to efficiently
and cleanly extend the I/O datapath with such services is a topic of
current collaboration between our group and fusion modeling and
I/O researchers at Oak Ridge and Sandia National Labs and Uni-
versity of New Mexico, resulting in the construction of ‘IOgraphs’,
which implement efficient overlay-based implementations of data
movements to/from HPC machines’ compute nodes.

An interesting extension of these ideas is to consider accelera-
tors as virtualizable entities. Toward this end, our group is currently
working on virtualization solutions for Nvidia GPUs, FPGAs, and
STI Cell processors. These types of accelerators have been repeat-
edly used in various HPC systems [21, 20, 11, 10], even on compute
nodes. Therefore any virtualization solution targeted at HPC must
consider the virtualization of these types of resources.

5. Managing Virtualized Multicore Platforms
The management of large-scale HPC systems, particularly with the
move towards many-core platform, requires a mix of local, node-
resident functionality (e.g., for monitoring of application behav-
ior, platform power and thermal properties, and risk- and failure-
prediction analysis) along with global mechanisms for system-wide
enforcement of policies for fault-tolerance, reliability and availabil-
ity, and resource utilization (e.g., power). Management challenges
are further exasperated in virtualized platforms, due to potential
conflicts between individual VM’s management actions, and entire
platform- or system-level behaviors. Toward this end, we are cur-
rently developing a set of mechanisms for Virtual Platform Man-
agement (VPM), which can be beneficial, and easily integrated in
HPC infrastructures.

For instance, in virtualized environments, three different VPM
mechanisms may be used to increase power efficiency: (i) direct
hardware scaling of physical hardware (ii) ‘soft’ scaling of hard-
ware resources, which uses scheduling changes in the VMM to re-
duce physical resource allocation to match requirements desired by

the guest, and (iii) consolidation of physical resources among guest
operating systems where multiple soft-scaled virtual resources are
mapped to the same physical resource. The first two are driven
by local power management policies on each physical platform,
while consolidation decisions are made by a distributed or global
policy. The combination of these three mechanisms is an effec-
tive way of managing power in virtualized environments, either
for cost-conserving policies, or for policies where power-related
behaviors are used as a factor in managing system reliability and
fault-tolerance. Similar sets of mechanisms can be developed for
monitoring and managing other types of system resources or for
enforcing a wide range of system-wide properties.

6. Related Work
We do not review the extensive literature on reliability and avail-
ability for large-scale systems, as this paper presents opportunities
and challenges rather than specific solutions in this domain. We do
note, however, that there is substantial prior work that addresses
the benefits of using dedicated cores for I/O and communication
services, both in heterogeneous [14] and homogeneous [4] multi-
core systems. Self-virtualized devices [19, 15] provide I/O virtu-
alization to guest VMs by utilizing the processing power of cores
on the I/O device itself. In a similar manner, driver domains for
device virtualization [3, 16] utilize cores associated with them to
provide I/O virtualization to guest VMs. The sidecore approach
presented in this paper uses dedicated host core(s) for system vir-
tualization tasks. Particularly, we advocate the partitioning of the
VMM’s functionalities and utilizing dedicated core(s) to implement
a subset of them. A similar approach is to use processor partitioning
for network processing [4]. Further, to reduce resource contention
issues in many-core systems, the L4KA micro-kernel [22] uses a
dynamic locking approach. The sidecore approach, on the other
hand, presents an alternative to using functional partitioning and
dedicated cores to reduce locking contention. Finally, [12] and [28]
have already demonstrated acceptable overheads as experienced by
scientific MPI applications executing on top of Xen. The objective
of our work is to further reduce the overheads, ensure predictable
performance levels, and offer ways to introduce new functionality.

7. Conclusions and Future Work
This paper has two purposes: (1) it presents opportunities for HPC
platforms and applications to benefit from system virtualization,
and (2) it presents some challenges in realizing these benefits. Op-
portunities include improved reliability through transparent sup-
port for VM migration and through non-intrusive monitoring of
HPC machine assets. They also include the ability to associate en-



tirely new functionality with virtualized services, such as the abil-
ity to continuously monitor application progress, via perturbation-
controlled and efficient online data extraction from HPC machines’
compute nodes, complemented with efficient I/O via virtualized
local and remote devices. Finally, virtualization infrastructures
make it possible to cleanly and efficiently associate entirely new,
application-relevant functionality with I/O actions, including on-
line data filtering, metadata generation, and others.

Virtualization also offers challenges to HPC machines. Results
presented in this paper offer evidence that hypervisors (VMMs)
must be re-structured to permit them to operate efficiently on fu-
ture many-core platforms. Thesidecoreapproach combines VMM
componentization with core partitioning and specialization to bet-
ter meet applications’ performance demands. In addition, for I/O,
it is necessary to flexibly map virtualization functions to host-side
cores vs. offloading them to devices (for higher end devices). Fur-
ther, such mappings and the implementations of virtualized devices
must enable the direct application-device paths commonly used in
HPC systems. Finally, VMM scheduling and resource allocation
policies must consider the device-level QoS capabilities in order to
ensure desired quality levels to individual VMs.

Our future work has two goals. First, we will further explore
and experiment with efficient I/O solutions on virtualized HPC ma-
chines, via an ongoing effort on High Performance I/O joint with
researchers at University of New Mexico, Oak Ridge and San-
dia National Labs, also involving some of our industry partners.
Second, we will more rigorously explore the componentization of
VMMs, to attain improved scalability for many-core platforms and
from there, for petascale computing engines. A key element of that
work will be the improved asset management, that is, improve-
ments in the way in which many-core assets are managed jointly
with I/O resources, accelerators, etc. Management goals include
better reliability for large-scale HPC codes and better power be-
havior for virtualized multi-core nodes and server infrastructures.

References
[1] K. Adams and O. Agesen. A Comparison of Software and Hardware

Techniques for x86 Virtualization. InASPLOS’06, 2006.

[2] Amazon Elastic Compute Cloud (EC2). aws.amazon.com/ec2.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. InSOSP 2003, 2003.

[4] T. Brecht et al. Evaluating Network Processing Efficiency with
Processor Partitioning and Asynchronous I/O. InEurosys, 2006.

[5] R. Brightwell, A. B. Maccabe, and R. Riesen. On The Appropri-
ateness of Commodity Operating Systems for Large-Scale, Balanced
Computing Systems. InIPDPS, 2003.

[6] R. Brightwell, K. Pedretti, K. Underwood, and T. Hdson. SeaStar
Interconnect: Balanced Bandwidth for Scalable Performance.Micro,
2006.

[7] K. Ferreira, R. Brightwell, and P. Bridges. An Infrastructure for
Characterizing the Sensitivity of Parallel Applications to OS Noise.
In WIPS Reports: OSDI’06, 2006.

[8] A. Gavrilovska, K. Schwan, O. Nordstrom, and H. Seifu. Network
Processors as Building Blocks in Overlay Networks. InHotIntercon-
nects, 2003.

[9] Global Environment for Network Innovations. http://www.geni.net.

[10] N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha. A Memory
Model for Scientific Algorithms on Graphics Processors. InACM
SuperComputing’06, 2006.

[11] P. Hofstee. Real-time Supercomputing and Technology for Games
and Entertainment. Invited Talk, Supercomputing’06.

[12] W. Huang, J. Liu, and D. Panda. A Case for High Performance

Computing with Virtual Machines. InICS, 2006.

[13] Intel Research Advances ‘Era of Tera’. Intel News Release,
www.intel.com/pressroom/archive/releases/20070204comp.htm.

[14] S. Kumar, A. Gavrilovska, S. Sundaragopalan, and K. Schwan. C-
CORE: Using Communication Cores for High-Performance Network
Services. InNCA, 2004.

[15] J. Liu, W. Huang, B. Abali, and D. K. Panda. High Performance
VMM-Bypass I/O in Virtual Machines. InATC, 2006.

[16] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing Network
Virtualization in Xen. InProc. of USENIX Annual Technical
Conference, 2006.

[17] A. Menon et al. Diagnosing performance overheads in the xen virtual
machine environment. InProc. of VEE, 2005.

[18] F. Petrini, D. Kerbyson, and S. Pakin. The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on the
8192 Processors of ASCI Q. InSupercomputing’03, 2003.

[19] H. Raj, I. Ganev, K. Schwan, and J. Xenidis. Scalable I/O
Virtualization via Self-Virtualizing Devices. Technical Report GIT-
CERCS-06-02, Georgia Tech, 2006.

[20] K. N. Roark. Laboratory Reaches for the Petaflop.LANL Daily News
Bulletin, 2006.

[21] M. Smith, J. S. Vetter, and X. Liang. Accelerating Scientific Appli-
cations with the SRC-6E Reconfigurable Computer: Methodologies
and Analysis. InProc. 12th Reconfigurable Architectures Workshop
(RAW), Denver, CO, 2005.

[22] V. Uhlig et al. Towards Scalable Multiprocessor Virtual Machines. In
Proc. of the Virtual Machine Research and Technology Symposium,
2004.

[23] G. Vallee, T. Naughton, H. Ong, and S. Scott. Checkpoint/Restart of
Virtual Machines Based on Xen. InHAPCW, 2006.

[24] Virtual Iron. virualiron.com.

[25] L. Weng, G. Agrawal, U. Catalyurek, T. Kurc, S. Narayanan, and
J. Saltz. An Approach for Automatic Data Virtualization. InHPDC,
2004.

[26] E. Witchel, S. Larson, C. S. Ananian, and K. Asanovic. Direct
Addressed Caches for Reduced Power Consumption. In34th
International Symposium on Microarchitecture (MICRO-34), 2001.

[27] M. Wolf, H. Abbasi, B. Collins, D. Spain, and K. Schwan. Service
Augmentation for High End Interactive Data Services. InIEEE
Cluster Computing Conference 2005 (Cluster 05), 2005.

[28] L. Youseff, R. Wolski, B. Gorda, and C. Krintz. Evaluating the
Performance Impact of Xen on MPI and Process Execution For HPC
Systems. InInternational Workshop on Virtualization Technologies
in Distributed Computing (VTDC), with Supercomputing’06, 2006.


