
A Top-Down Approach to 
Dynamically Tune I/O for HPC 
Virtualization

Ben Eckart1, Ferrol Aderholdt1, 
Juho

 
Yoo1, Xubin

 
He1, 

and Stephen L. Scott2

1

Tennessee Technological University1

Oak Ridge National Laboratory2



Why HPC & Virtualization
Virtualization in HPC provides exciting possibilities:

-

 
Build the system according to application.
-

 
Right weight kernels

-

 
Light weight kernels

-

 
Resilience via live migration.
-

 
VM system migration

-

 
Migrate application

-

 
Dynamic job consolidation.
-

 
Work load characterization

-

 
Interleave application work according to resources

2



Introduction

Provide a runtime framework for 
dynamically optimizing I/O on 
virtualized clusters using user-level tools. 

3



Outline
•

 
Motivation: Poor locality for virtual I/O and wealth of applicable 
user-level tools for tackling the problem.

•

 
Our solution: ExPerT

 

(Extensible Performance Toolkit)
▫

 

Research Plan and Methodology
▫

 

Components
▫

 

Syntax
▫

 

Usage

•

 
Experimental results with pinning

•

 
Conclusions & Future Work

4



The Current state of the Art
•

 
New technologies have decreased the overhead 
of virtualization.
▫

 
According to recent studies, virtualization only 
provides roughly 2-4% overhead in compute-

 bound scenarios.
•

 
Intel and AMD have also provided hardware 
support to help boost performance at the CPU.

•
 

Virtualization platforms have been rapidly 
maturing and have gained acceptance in the IT 
and home sectors.

5



Motivation
•

 
More work needs to be done that focuses on 
improving I/O performance within Virtual 
Machines.
▫

 
Additionally, most work has focused on network 
I/O and not disk I/O.

•
 

This presents a problem in I/O bound 
applications in a High Performance Computing 
(HPC) environment where thousands of virtual 
machines (VMs) could be running on a limited 
number of compute nodes creating an I/O 
bottleneck.



Motivation (cont.)
•

 
Specifically, we work with KVM, which uses 
virtio

•
 

As I/O requests come in from more and more 
VMs

 
on the system, virtio

 
will become 

overloaded with requests and take up a high 
percentage of CPU usage.
▫

 
Decreasing I/O throughput by decreasing I/O 
operations per second (IOPs).

▫
 

An increased number of context switches and 
cache misses

7



Motivation (cont.)
•

 
Virtualization 
causes large 
increases in 
cache misses

•
 

Order of 
magnitudes 
difference

8



Motivation (cont.)
•

 
Virtualization puts us in a unique position to 
perform in-depth system monitoring without 
instrumentation of hardware techniques

•
 

The large performance gap in I/O motivates us 
to look at how we can leverage the 
virtualization platform itself to optimize the 
system

9



Our Solution
•

 
To alleviate the I/O bottleneck, we propose a 
testing and tuning framework with a 
combination of commonly found user-level tools 
in order to achieve greater performance.
▫

 
The Extensible Performance Toolkit (ExPerT) is 
used in this work as it supports such a framework.

•
 

The methods under study are primarily the use 
of pinning

 
and prioritization. We focus on 

pinning in this talk.

10



Our Solution (cont.)
•

 
We use pinning in order to lower cache misses when 
using virtio, as it is CPU intensive.
▫

 
Pinning refers to the assigning core affinities to 
processes

▫

 
This should increase the possible IOPS and thus 
increase performance.

•

 
We use prioritization in order to effect how each VM is 
scheduled.
▫

 
We prioritize processes by changing their “niceness”

▫

 
Scheduling an I/O intensive VM more should increase 
I/O throughput vs. a fair scheduling approach.

11



Our Solution (cont.)
•

 
We use pinning in order to lower cache misses when 
using virtio, as it is CPU intensive.
▫

 
Pinning refers to the assigning core affinities to 
processes

▫

 
This should increase the possible IOPS and thus 
increase performance.

•

 
We use prioritization in order to effect how each VM is 
scheduled.
▫

 
We prioritize processes by changing their “niceness”

▫

 
Scheduling an I/O intensive VM more should increase 
I/O throughput vs. a fair scheduling approach.

12

What is novel here?
• Design of the runtime toolkit

• Methods of auto-tuning via user level 

tools versus others that require kernel 

level mods



Research Methodology 
•

 
We wish to look at the Kernel-based Virtual 
Machine (KVM) as it is more readily available to 
researchers since it is integrated in the main-line 
Linux kernel.
▫

 
Simply loading a module loads the hypervisor.

▫
 

VMs
 

are deployed as processes
•

 
User-level tools are used to both speedup 
development of this approach and to allow for 
the ease of reproducibility by other researchers.

13



ExPerT
•

 
Distributed testing framework with a database 
backend, visualization, and test suite creation 
tools for virtual systems.

•
 

Updates its database in real-time.
•

 
Closely integrates with Oprofile, vmstat, and the 
sysstat

 
suite of tools.

•
 

Uses a distributed object model.
•

 
Support for automatic tuning and optimization.

14



15The Framework (architecture organization)



The Framework (logical organization)

•

 
Consists primarily of three parts:
1. Batch: a test creation tool.
2. Tune: a tuning tool.
3. Mine: a data discovery tool.

16



Batch
•

 
Object-Oriented design

•
 

Uses remote objects
▫

 
RemoteServer: a remote process server which 
maintains a list of processes and defines the 
methods through which they can be controlled.

▫
 

RemoteProgram: contains the basic 
functionality for communication over the network 
including the ability to control remote processes.

E.g. starting, killing, waiting, gathering output and 
sending input.

17



Mine
•

 
Utilizes the results collected from the batch 
phase.
▫

 
All results during the batch phase are not parsed 
and instead mine accomplishes this task.

•
 

Allows for the visualization of the results.
▫

 
Through an interactive wizard

▫
 

Or through a declarative syntax similar to the 
configuration syntax

18



Mine (cont’d)
•

 
Why does mine do the parsing and not batch?
▫

 
Flexibility: our parser may change, losing or gaining 
attributes. Lazy parsing does not lock in past tests.

▫

 
Efficiency during: since we delay parsing, we save 
computation during the data collection process.

▫

 
Efficiency after: we can selectively parse out data as 
we need it (parse on demand).

▫

 
Lossless accounting: we can always look at raw 
output if we need it since parsing for attributes will 
necessarily remove data.

19



The Data Store
•

 
A wrapper for sqlite

 
and is essential for making 

the data coming into the database a standard 
format. 

•
 

The general schema of the database consists of 
three tables:
▫

 
A high-level batch table that lists saved batch 
results and short descriptions.

▫
 

A table that lists individual processes and their 
unique id within a batch.

▫
 

A table that lists raw process output, per line, for a 
uniquely identified process.

20



Syntax
•

 
Listing various test cases for the system under 
study, we identified the commonality of the 
testing procedure between these different types 
of tests

•
 

From this, we derived a declarative syntax for 
quickly defining groups of tests. 

21



Syntax (cont’d)
•

 
Five general constructs are defined in our 
syntax:
▫

 
A sequential command structure.

▫
 

A parallel command structure.
▫

 
A process location mechanism.

▫
 

A method to define process synchronization.
▫

 
A method for test aggregation across differing 
parameters

22



Syntax (cont’d)
•

 
Each configuration file (set of batches) contains:
▫

 
A section describing the cluster topology

▫
 

Sections declaring a set of related tests (batch)
▫

 
Intra-sectional information includes:

Process handles
Special modifiers

Regular Expression handles.
Range handles.
Parallel and Sequential Identifiers.

A special “test” handle
▫

 
Optional Comments

23



Syntax: Sections
•

 
Sections
▫

 
Each section describes a set of related tests and is 
denoted by the use of […] (e.g. [My Section N])

▫
 

The section labeled [machines] is a special section.
This describes the topology to be used during the 
tests.
Each line takes the form “name: IP”, e.g.:

phys1: 192.168.1.1
phys2: 192.168.1.2
virt1: 192.168.1.11
virt2: 192.168.1.12

24



Syntax: Intra-sectional Information
•

 
Need to describe “where”

 
and “what”

 
to do

•
 

The “where”
 

is given by the @ symbol in the form of 
“test@location(s)”
▫

 
location is the handle or a regular expression matching 
the handles for the machine names in the machines 
section. 

•
 

The first parameter is the “what”
 

parameter given 
from a handle declaration, giving the test to be run.

•
 

The test handle will specify the test to be run from 
the test declaration.

25



Syntax: Special modifiers
•

 

Regular Expression Handles
▫

 

If we wish to command all virtual machines v1,v2,v3,v4 to perform a task we could 
specify them by v* or v[1234] or v[1-4].

•

 

Range handle
▫

 

range: start stop step (inclusive). 
▫

 

When a range is needed, one can simply supply %d (printf

 

syntax) and it will 
automatically fill

 

in the batch with the range of values.

•

 

Parallel and Sequential Identifiers
▫

 

The double bar || specifies parallel jobs (job1||job2||job3)
▫

 

A space denotes sequential processes from left to right (job1 job2 job3)

•

 

Test handle
▫

 

This key, value pair, (job@location) must exist once in each section or no test will 
occur.

•

 

Comments
▫

 

Comments are string preceded by the symbols # or ;

26



Syntax: Example 1 – iterating across a 
parameter value
•

 
We first define our topology 
with the [machines] section

•

 
We then define our first batch 
[Test 1: …

 
]

•

 
We employ four tags: start, 
range, prog, prof, test (range, 
test are special tags as 
discussed before)

•

 
The test line runs “start”

 
and 

then “prog”

 
in parallel with 

“prof”

 
at the designated 

locations (via regex) over the 
set iterations defined in the 
range tag

27

[machines]
# these names are arbitrary,
# but should be named for easy grouping
# via regular expressions
phys1: 192.168.1.1
phys2: 192.168.1.2
virt1: 192.168.1.11
virt2: 192.168.1.12
virt3: 192.168.1.21
virt4: 192.168.1.22

[Test 1: running myApp 20 times, varying k]
# sample progName: name args
start: echo "starting test..."
# run from 0 to 100 (inclusive), incr 5
range: 0 100 5
# run myApp with k parameter set to each
prog: myApp -k %d
prof: myProfiler --init # profiling app
test: start@phys prog@virt||prof@phys

[Test 2: ... ]
...



Syntax: Example 2 – scaling over 
multiple nodes
•

 
We define our topology as 
before

•

 
We then define our batch 
[test of node scaling]

•

 
We define the application and 
profiler with the “myProg”

 
and “myProf”

 
tags

•

 
We run them in parallel 
utilizing the regex

 
syntax for 

the location parameter
•

 
The test will start out on one 
node (virt[1-1]) and end on 
virt[1-4]), performing a 
scaling test

28

[machines]
# these names are arbitrary,
# but should be named for easy 
grouping
# via regular expressions
phys1: 192.168.1.1
virt1: 192.168.1.11
virt2: 192.168.1.12
virt3: 192.168.1.21
virt4: 192.168.1.22

[test of node scaling]
range: 1 4 1 # scale up to 4 nodes
myProg: myApp2
myProf: myProfiler --init
test: myProg@virt[1-%d]||myProf@phys1



Data Parsing
•

 
The on-the-fly

 
data parsing is done from three 

common steps:
▫

 
A regular expression formulation of the desired 
output format.

▫
 

A label map corresponding to the regular 
expression group list.

▫
 

A type map corresponding to the data types to be 
found by the regular expression.

29



Data Parsing (cont’d)
•

 
We can logically break up the flow

 
of the syntax into 

a 5-tuple, (b, t, g, p, l). 
▫

 
b is the batch ID, specifying which batch test we are 
performing. 

▫

 
t is the test ID, specifying the particular test inside the 
batch.

▫

 
g is the group ID, specifying the sequential placement 
of a process in a test. 

▫

 
p is the process ID.

▫

 
l is a line identifier

 
for individual process output.

•
 

Thus, our schema is a 5-dimensional (staggered) 
array

30



Data Parsing: Schema Example

31

start@phys prog@virt||prof@phys

Group 0 Group 1

Test k for k = 0 .. N

Batch 0

Process 0 to p -1 Process p to p + v - 1 Process p + v to 
2p + v - 1

Assume: k is range parameter from 0 .. N, “p”

 

is # of physical 
nodes,  “v”

 

is # of virtual nodes



Data Parsing: Putting it all together

•
 

Given a common results schema and known 
parsing expressions, we can
▫

 
Graph results

▫
 

Calculate common statistical measures across 
multiple tests (max, min, avg, var, stddev)

▫
 

Use results within the Tune module for dynamic 
optimization 

(e.g. if context switches jump more than 200% over 
a specified time quantum, apply policy X to process)

32



Experimental Testbed

•
 

Mach4
▫

 
Our 4 node cluster

▫
 

Each node contains two quad-core Xeon 5520 
CPUs and 6 GBs

 
of ram

•
 

Used ExPerT
 

and KVM to examine two policies 
with 5 VMs

 
per node:

1.Pinning only one VM to a core while performing 
iozone

 
write benchmarks.

2.Pinning 5 VMs
 

to a core while performing iozone
 write benchmarks. 

33



Workflow
•

 
A general workflow

 
consists of the following steps:

▫

 
Start virtual machines, and start the RemoteProcess

 server on every node, physical and virtual (this may be 
a startup script).

▫

 
Create a configuration file specifying the batch test(s) 
to be run, the identification and tuning policies, and 
the machine map.

▫

 
Run Batch from the head node with the configuration 
file specified.

▫

 
(Optional) Run any of the post-mortem tools (Mine) 
for further analysis

34



Experimental Results

35



Experimental Results

36

Pinning 1 VM seemed to be the 
more stable choice reducing L2 
cache misses by around 15%.



Experimental Results

37

Pinning all 5 VMs seemed to give 
good results as well but it 
reduces L2 cache misses by up 
to 20% on one node.



Conclusions 
•

 
There are ways to alleviate the I/O bottleneck by 
using simple user-level tools.

•
 

In comparison to related work, we consider the 
use of such a toolset as “performance for free”

 since we do not compromise portability by 
modifying the kernel, locking one into a 
particular platform, etc.

•
 

Through the pinning of VMs
 

it is possible to 
decrease L2 cache misses by up to 20%.

38



Future Work
•

 
We wish to move to a more automated approach 
of self-optimization (using user-defined policies)

•
 

We would like to look towards using more 
lightweight protocols than TCP/IP for our 
remote objects usage for increased scalability.

•
 

We would like to investigate other methods of 
dynamically changing the properties of virtual 
machines to modify their performance.

39



Acknowledgments
•

 
This work is sponsored by U.S. NSF under Grant 
No. CCF-0937850

40


	A Top-Down Approach to Dynamically Tune I/O for HPC Virtualization
	Why HPC & Virtualization
	Introduction
	Outline
	The Current state of the Art
	Motivation
	Motivation (cont.)
	Motivation (cont.)
	Motivation (cont.)
	Our Solution
	Our Solution (cont.)
	Our Solution (cont.)
	Research Methodology 
	ExPerT
	Slide Number 15
	The Framework (logical organization)
	Batch
	Mine
	Mine (cont’d)
	The Data Store
	Syntax
	Syntax (cont’d)
	Syntax (cont’d)
	Syntax: Sections
	Syntax: Intra-sectional Information
	Syntax: Special modifiers
	Syntax: Example 1 – iterating across a parameter value
	Syntax: Example 2 – scaling over multiple nodes
	Data Parsing
	Data Parsing (cont’d)
	Data Parsing: Schema Example
	Data Parsing: Putting it all together
	Experimental Testbed
	Workflow
	Experimental Results
	Experimental Results
	Experimental Results
	Conclusions 
	Future Work
	Acknowledgments

