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Why HPC & Virtualization
Virtualization in HPC provides exciting possibilities:

-

 
Build the system according to application.
-

 
Right weight kernels

-

 
Light weight kernels

-

 
Resilience via live migration.
-

 
VM system migration

-

 
Migrate application

-

 
Dynamic job consolidation.
-

 
Work load characterization

-

 
Interleave application work according to resources

2



Introduction

Provide a runtime framework for 
dynamically optimizing I/O on 
virtualized clusters using user-level tools. 
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Outline
•

 
Motivation: Poor locality for virtual I/O and wealth of applicable 
user-level tools for tackling the problem.

•

 
Our solution: ExPerT

 

(Extensible Performance Toolkit)
▫

 

Research Plan and Methodology
▫

 

Components
▫

 

Syntax
▫

 

Usage

•

 
Experimental results with pinning

•

 
Conclusions & Future Work
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The Current state of the Art
•

 
New technologies have decreased the overhead 
of virtualization.
▫

 
According to recent studies, virtualization only 
provides roughly 2-4% overhead in compute-

 bound scenarios.
•

 
Intel and AMD have also provided hardware 
support to help boost performance at the CPU.

•
 

Virtualization platforms have been rapidly 
maturing and have gained acceptance in the IT 
and home sectors.
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Motivation
•

 
More work needs to be done that focuses on 
improving I/O performance within Virtual 
Machines.
▫

 
Additionally, most work has focused on network 
I/O and not disk I/O.

•
 

This presents a problem in I/O bound 
applications in a High Performance Computing 
(HPC) environment where thousands of virtual 
machines (VMs) could be running on a limited 
number of compute nodes creating an I/O 
bottleneck.



Motivation (cont.)
•

 
Specifically, we work with KVM, which uses 
virtio

•
 

As I/O requests come in from more and more 
VMs

 
on the system, virtio

 
will become 

overloaded with requests and take up a high 
percentage of CPU usage.
▫

 
Decreasing I/O throughput by decreasing I/O 
operations per second (IOPs).

▫
 

An increased number of context switches and 
cache misses
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Motivation (cont.)
•

 
Virtualization 
causes large 
increases in 
cache misses

•
 

Order of 
magnitudes 
difference
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Motivation (cont.)
•

 
Virtualization puts us in a unique position to 
perform in-depth system monitoring without 
instrumentation of hardware techniques

•
 

The large performance gap in I/O motivates us 
to look at how we can leverage the 
virtualization platform itself to optimize the 
system
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Our Solution
•

 
To alleviate the I/O bottleneck, we propose a 
testing and tuning framework with a 
combination of commonly found user-level tools 
in order to achieve greater performance.
▫

 
The Extensible Performance Toolkit (ExPerT) is 
used in this work as it supports such a framework.

•
 

The methods under study are primarily the use 
of pinning

 
and prioritization. We focus on 

pinning in this talk.
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Our Solution (cont.)
•

 
We use pinning in order to lower cache misses when 
using virtio, as it is CPU intensive.
▫

 
Pinning refers to the assigning core affinities to 
processes

▫

 
This should increase the possible IOPS and thus 
increase performance.

•

 
We use prioritization in order to effect how each VM is 
scheduled.
▫

 
We prioritize processes by changing their “niceness”

▫

 
Scheduling an I/O intensive VM more should increase 
I/O throughput vs. a fair scheduling approach.
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Our Solution (cont.)
•

 
We use pinning in order to lower cache misses when 
using virtio, as it is CPU intensive.
▫

 
Pinning refers to the assigning core affinities to 
processes

▫

 
This should increase the possible IOPS and thus 
increase performance.

•

 
We use prioritization in order to effect how each VM is 
scheduled.
▫

 
We prioritize processes by changing their “niceness”

▫

 
Scheduling an I/O intensive VM more should increase 
I/O throughput vs. a fair scheduling approach.
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What is novel here?
• Design of the runtime toolkit

• Methods of auto-tuning via user level 

tools versus others that require kernel 

level mods



Research Methodology 
•

 
We wish to look at the Kernel-based Virtual 
Machine (KVM) as it is more readily available to 
researchers since it is integrated in the main-line 
Linux kernel.
▫

 
Simply loading a module loads the hypervisor.

▫
 

VMs
 

are deployed as processes
•

 
User-level tools are used to both speedup 
development of this approach and to allow for 
the ease of reproducibility by other researchers.
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ExPerT
•

 
Distributed testing framework with a database 
backend, visualization, and test suite creation 
tools for virtual systems.

•
 

Updates its database in real-time.
•

 
Closely integrates with Oprofile, vmstat, and the 
sysstat

 
suite of tools.

•
 

Uses a distributed object model.
•

 
Support for automatic tuning and optimization.
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15The Framework (architecture organization)



The Framework (logical organization)

•

 
Consists primarily of three parts:
1. Batch: a test creation tool.
2. Tune: a tuning tool.
3. Mine: a data discovery tool.

16



Batch
•

 
Object-Oriented design

•
 

Uses remote objects
▫

 
RemoteServer: a remote process server which 
maintains a list of processes and defines the 
methods through which they can be controlled.

▫
 

RemoteProgram: contains the basic 
functionality for communication over the network 
including the ability to control remote processes.

E.g. starting, killing, waiting, gathering output and 
sending input.
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Mine
•

 
Utilizes the results collected from the batch 
phase.
▫

 
All results during the batch phase are not parsed 
and instead mine accomplishes this task.

•
 

Allows for the visualization of the results.
▫

 
Through an interactive wizard

▫
 

Or through a declarative syntax similar to the 
configuration syntax
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Mine (cont’d)
•

 
Why does mine do the parsing and not batch?
▫

 
Flexibility: our parser may change, losing or gaining 
attributes. Lazy parsing does not lock in past tests.

▫

 
Efficiency during: since we delay parsing, we save 
computation during the data collection process.

▫

 
Efficiency after: we can selectively parse out data as 
we need it (parse on demand).

▫

 
Lossless accounting: we can always look at raw 
output if we need it since parsing for attributes will 
necessarily remove data.
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The Data Store
•

 
A wrapper for sqlite

 
and is essential for making 

the data coming into the database a standard 
format. 

•
 

The general schema of the database consists of 
three tables:
▫

 
A high-level batch table that lists saved batch 
results and short descriptions.

▫
 

A table that lists individual processes and their 
unique id within a batch.

▫
 

A table that lists raw process output, per line, for a 
uniquely identified process.
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Syntax
•

 
Listing various test cases for the system under 
study, we identified the commonality of the 
testing procedure between these different types 
of tests

•
 

From this, we derived a declarative syntax for 
quickly defining groups of tests. 
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Syntax (cont’d)
•

 
Five general constructs are defined in our 
syntax:
▫

 
A sequential command structure.

▫
 

A parallel command structure.
▫

 
A process location mechanism.

▫
 

A method to define process synchronization.
▫

 
A method for test aggregation across differing 
parameters
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Syntax (cont’d)
•

 
Each configuration file (set of batches) contains:
▫

 
A section describing the cluster topology

▫
 

Sections declaring a set of related tests (batch)
▫

 
Intra-sectional information includes:

Process handles
Special modifiers

Regular Expression handles.
Range handles.
Parallel and Sequential Identifiers.

A special “test” handle
▫

 
Optional Comments
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Syntax: Sections
•

 
Sections
▫

 
Each section describes a set of related tests and is 
denoted by the use of […] (e.g. [My Section N])

▫
 

The section labeled [machines] is a special section.
This describes the topology to be used during the 
tests.
Each line takes the form “name: IP”, e.g.:

phys1: 192.168.1.1
phys2: 192.168.1.2
virt1: 192.168.1.11
virt2: 192.168.1.12
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Syntax: Intra-sectional Information
•

 
Need to describe “where”

 
and “what”

 
to do

•
 

The “where”
 

is given by the @ symbol in the form of 
“test@location(s)”
▫

 
location is the handle or a regular expression matching 
the handles for the machine names in the machines 
section. 

•
 

The first parameter is the “what”
 

parameter given 
from a handle declaration, giving the test to be run.

•
 

The test handle will specify the test to be run from 
the test declaration.
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Syntax: Special modifiers
•

 

Regular Expression Handles
▫

 

If we wish to command all virtual machines v1,v2,v3,v4 to perform a task we could 
specify them by v* or v[1234] or v[1-4].

•

 

Range handle
▫

 

range: start stop step (inclusive). 
▫

 

When a range is needed, one can simply supply %d (printf

 

syntax) and it will 
automatically fill

 

in the batch with the range of values.

•

 

Parallel and Sequential Identifiers
▫

 

The double bar || specifies parallel jobs (job1||job2||job3)
▫

 

A space denotes sequential processes from left to right (job1 job2 job3)

•

 

Test handle
▫

 

This key, value pair, (job@location) must exist once in each section or no test will 
occur.

•

 

Comments
▫

 

Comments are string preceded by the symbols # or ;
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Syntax: Example 1 – iterating across a 
parameter value
•

 
We first define our topology 
with the [machines] section

•

 
We then define our first batch 
[Test 1: …

 
]

•

 
We employ four tags: start, 
range, prog, prof, test (range, 
test are special tags as 
discussed before)

•

 
The test line runs “start”

 
and 

then “prog”

 
in parallel with 

“prof”

 
at the designated 

locations (via regex) over the 
set iterations defined in the 
range tag

27

[machines]
# these names are arbitrary,
# but should be named for easy grouping
# via regular expressions
phys1: 192.168.1.1
phys2: 192.168.1.2
virt1: 192.168.1.11
virt2: 192.168.1.12
virt3: 192.168.1.21
virt4: 192.168.1.22

[Test 1: running myApp 20 times, varying k]
# sample progName: name args
start: echo "starting test..."
# run from 0 to 100 (inclusive), incr 5
range: 0 100 5
# run myApp with k parameter set to each
prog: myApp -k %d
prof: myProfiler --init # profiling app
test: start@phys prog@virt||prof@phys

[Test 2: ... ]
...



Syntax: Example 2 – scaling over 
multiple nodes
•

 
We define our topology as 
before

•

 
We then define our batch 
[test of node scaling]

•

 
We define the application and 
profiler with the “myProg”

 
and “myProf”

 
tags

•

 
We run them in parallel 
utilizing the regex

 
syntax for 

the location parameter
•

 
The test will start out on one 
node (virt[1-1]) and end on 
virt[1-4]), performing a 
scaling test
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[machines]
# these names are arbitrary,
# but should be named for easy 
grouping
# via regular expressions
phys1: 192.168.1.1
virt1: 192.168.1.11
virt2: 192.168.1.12
virt3: 192.168.1.21
virt4: 192.168.1.22

[test of node scaling]
range: 1 4 1 # scale up to 4 nodes
myProg: myApp2
myProf: myProfiler --init
test: myProg@virt[1-%d]||myProf@phys1



Data Parsing
•

 
The on-the-fly

 
data parsing is done from three 

common steps:
▫

 
A regular expression formulation of the desired 
output format.

▫
 

A label map corresponding to the regular 
expression group list.

▫
 

A type map corresponding to the data types to be 
found by the regular expression.
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Data Parsing (cont’d)
•

 
We can logically break up the flow

 
of the syntax into 

a 5-tuple, (b, t, g, p, l). 
▫

 
b is the batch ID, specifying which batch test we are 
performing. 

▫

 
t is the test ID, specifying the particular test inside the 
batch.

▫

 
g is the group ID, specifying the sequential placement 
of a process in a test. 

▫

 
p is the process ID.

▫

 
l is a line identifier

 
for individual process output.

•
 

Thus, our schema is a 5-dimensional (staggered) 
array
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Data Parsing: Schema Example

31

start@phys prog@virt||prof@phys

Group 0 Group 1

Test k for k = 0 .. N

Batch 0

Process 0 to p -1 Process p to p + v - 1 Process p + v to 
2p + v - 1

Assume: k is range parameter from 0 .. N, “p”

 

is # of physical 
nodes,  “v”

 

is # of virtual nodes



Data Parsing: Putting it all together

•
 

Given a common results schema and known 
parsing expressions, we can
▫

 
Graph results

▫
 

Calculate common statistical measures across 
multiple tests (max, min, avg, var, stddev)

▫
 

Use results within the Tune module for dynamic 
optimization 

(e.g. if context switches jump more than 200% over 
a specified time quantum, apply policy X to process)
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Experimental Testbed

•
 

Mach4
▫

 
Our 4 node cluster

▫
 

Each node contains two quad-core Xeon 5520 
CPUs and 6 GBs

 
of ram

•
 

Used ExPerT
 

and KVM to examine two policies 
with 5 VMs

 
per node:

1.Pinning only one VM to a core while performing 
iozone

 
write benchmarks.

2.Pinning 5 VMs
 

to a core while performing iozone
 write benchmarks. 
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Workflow
•

 
A general workflow

 
consists of the following steps:

▫

 
Start virtual machines, and start the RemoteProcess

 server on every node, physical and virtual (this may be 
a startup script).

▫

 
Create a configuration file specifying the batch test(s) 
to be run, the identification and tuning policies, and 
the machine map.

▫

 
Run Batch from the head node with the configuration 
file specified.

▫

 
(Optional) Run any of the post-mortem tools (Mine) 
for further analysis
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Experimental Results
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Experimental Results

36

Pinning 1 VM seemed to be the 
more stable choice reducing L2 
cache misses by around 15%.



Experimental Results

37

Pinning all 5 VMs seemed to give 
good results as well but it 
reduces L2 cache misses by up 
to 20% on one node.



Conclusions 
•

 
There are ways to alleviate the I/O bottleneck by 
using simple user-level tools.

•
 

In comparison to related work, we consider the 
use of such a toolset as “performance for free”

 since we do not compromise portability by 
modifying the kernel, locking one into a 
particular platform, etc.

•
 

Through the pinning of VMs
 

it is possible to 
decrease L2 cache misses by up to 20%.
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Future Work
•

 
We wish to move to a more automated approach 
of self-optimization (using user-defined policies)

•
 

We would like to look towards using more 
lightweight protocols than TCP/IP for our 
remote objects usage for increased scalability.

•
 

We would like to investigate other methods of 
dynamically changing the properties of virtual 
machines to modify their performance.
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