Partially supported by

Lightweight GPGPU &
Checkpoint Modelings <2

Office of Science
U.5. Department of Energy

Presenter: BoX. Leangsuksun
SWEPCO Endowed Professor*, Computer Science

Louisiana Tech University
box@latech.edu

S. Laosooksathit, N. Naksinehaboon, K. Chanchio Amir Fabin
Box. Leangsuksun, A. Dhungana, U of Texas, Arlington
C. Chandler Thammasat Univ

Louisiana Tech U

%

nrnvmm;m L yramen A el
VIIL VWOUILROIIVUD, TAdlls C =y M\JI 1

Outlines

» Motivations
» Background - VCCP

» GPU checkpoint protocols: Memcopy vs
simpleStream

» CheCUDA (related work)

» GPU checkpoint protocols: CUDA Streams
» Restart protocols

» Scheduling model and Analysis

» Conclusion

4th HPCVirt workshop, Paris, France, April 13, 2010 2

Motivations

» More attention on GPUs
» ORNL-NVDIA 10 petaflop machine
» Large scale GPU cluster —> fault tolerance for

GPU applications

- Normal checkpoint doesn’t help GPU applications
when a failure occurs.

> GPU execution isn’t saved when do checkpoint on
CPU

4th HPCVirt workshop, Paris, France, April 13, 2010

VCCP: A Transparent, Coordinated

Checkpointing System for Virtualization-
based Cluster Computing - GOALS

» High transparency

- Checkpoint/restart mechanisms should be
transparent to applications, OS, and runtime
environments; no modification required

» Efficiency

- Checkpoint/restart mechanisms should not
generate unacceptable overheads
- Normal Execution
- Communication

- Checkpointing Delay

4th HPCVirt workshop, Paris, France, April 13, 2010

Virtual Cluster Architecture

Run apps/0OS unmodified

Guest OS Guest OS Laver 3:
Slirp = V llﬁle?l
s Machines
NIC NIC

Core VM engine

Core VM engine

VCCP (CO)

® o o oo > VCCP (Comp)

Virtual Network

N

Laver 1:
Virtoal

heckpoint/restart protocols

N

FIFO, Reliable

4th HPCVirt workshop, Paris, France, April 13,

Network

2010

Virtual Cluster CheckPointing
(VCCP) Protocol

. Pauce VM computation
. Flush messages out of the
network

. Locally Save State of every VM
. Continue computation

4th HPCVirt workshop, Paris, France, April 13, 2010

MHEEP checkpoint protocol

< Head > < compute(01 > < ccccccccc >
| | save
| | :I |
| \ save

4th HPCVirt workshop, Paris, France, April 13, 2010

MHEEP checkpoint protocol

H
S S S < ead > < compute(> < compute(>
1 2

RE

T T
l |
| I
| |

Flush

> communication

channel

J

Cchannel empty>
Gwe VM & buff@

@Ve VM & buff@ Gave VM & buff@

|

|

|

|

|

|

|

|

|

|

! |
| |
| |
| |
| |
| (channel empty) ! Cchannel empty)
| |
| |
| |
| |
| |
| |
| |
| |
| |

4th HPCVirt workshop, Paris, France, April 13, 2010

MHEEP checkpoint protocol

< Head > < compute(01 > < compute02 >
o > >

| |
| | | |
| |} success :
| I r~__\‘__\“-\‘ resume

|

cont
resume
cont

4th HPCVirt workshop, Paris, France, April 13, 2010

result result

More details in VCCP

» Publication in IEEE cluster 2009
» Average overhead 12%

» Provide transparent checkpoint/restart

4th HPCVirt workshop, Paris, France, April 13, 2010 10

Heterogeneous Computing -
GPGPU

1.
2.

>

Device Initialization

Device memory
allocation

Copies data to device
memory

Executes kernel (Calling
__global__ function)

Copies data from device
memory (retrieve results)

Issues - latency round trip
data movement

Host Device
Grid 1
Kernel Block Block Block
1 0,00 | (1,0 (20
Block” Block Block
(0, 1) 11 (21
,’/, Grldl/é ‘ll|\‘\‘
Kernel > |/ |'
2 III 1 ‘\\
. 2 || || FI
Block (1, 1)

4th HPCVirt workshop, Paris, France, April 13, 2010

11

Our approach

» Long running GPU application

» High (relatively) failure rate in a large scale
GPU cluster in MPI & GPU environment

» Save GPU software state

» Move data back from GPU in low latency

- Memcopy (pauce GPU) vs simpleStream
(concurrency)

4th HPCVirt workshop, Paris, France, April 13, 2010 12

Related Work (CheCUDA)

» “CheCUDA: A Checkpoint/Restart Tool for
CUDA Applications” by H. Takizawa, K. Sato,
K. Komatsu, and H. Kobayashi

» A prototype of an add-on package of BLCR
for GPU checkpointing

» Memcopy approach

4th HPCVirt workshop, Paris, France, April 13, 2010 13

GPGPU Checkpoint protocols

CPU @
Chec'“-"/”t' Reliable Storage
! Migration/ CPU

checkpointing

NHPCVM workshop, Paris, France, April 13, 2010 14

®

GPU checkpoint protocol:
memcopy

Process starts |

H-D memory
copy I

Kernel starts

Syncthread()

I GPU checkpoint

CPU checkpoint/ duration

migration «

Kernel
completes

D-H memory I
copy » i
Process ends l

‘W‘HPCVirt warkshop, Paris, France, April 13, 2010

15

CheCUDA: Checkpoint Protocol

1. Copying all the user data in the device
memory to the host memory

2. Writing the current status of the application
and the user data to a checkpoint file

4th HPCVirt workshop, Paris, France, April 13, 2010 16

CheCUDA: Restart protocol

1. Read the checkpoint file

2. Initialize the GPU and recreating CUDA
resources

3. Sending the user data back to the device
memory

4th HPCVirt workshop, Paris, France, April 13, 2010 17

GPU checkpoint protocol:
memcopy vs simpleStream

» Transfer data from device to host = overhead

> Must pauce GPU computation until the copy is
completed

» SimpleStream
- Using latency hiding (Streams) to reduce the
overhead
- CUDA streams = overlap memory copy and kernel
execution

4th HPCVirt workshop, Paris, France, April 13, 2010 18

GPU checkpoint protocol: Streams

Process starts 1

H-D memory I > Kernel starts Code Analysis

copy ; EI
i

After the sync point,
OVERWRITE?

Syncthread()

CPU I GPU checkpoint duration

checkpoint

/ migration

D-H memory =_
copy [? ' Kernel completes

Process ends

4th HPCVirt workshop, Paris, France, April 13, 2010

19

GPU checkpoint protocol: ensure
consistency

GPU

Process starts 1

H-D memory I > Kernel starts Code Analysis

copy ; é|
i

After the sync point,
OVERWRITE?

Syncthread()

4th HPCVirt workshop, Paris, France, April 13, 2010 20

GPU checkpoint Protocol: Streams
(cont.)

Process starts 1

After the ;
sync point, H-D memory I 3 Kernel starts

OVERWRITE? coPY EI
!

CPU I‘ GPU checkpoint duration

checkpoint
/ migration

D-H memory :_
copy . ' Kernel completes

Process ends

WHPCVM workshop, Paris, France, April 13, 2010

21

GPU Checkpoint Protocol: Streams
(cont.)

Process starts 1

Kernel starts

After the H-D memory
sync point, copy I
OVERWRITE?

Duplicate image

D-H memory |
copy . I

Copy the sync image in GPU

I GPU checkpoint duration

CPU checkpoint/
migration

¢ Kernel completes

Process ends

WHPCVM workshop, Paris, France, April 13, 2010

22

GPU Restart Protocol

» Restart CPU
» Transfer the last GPU checkpoint back to CPU
» Recreate CUDA context from the CKpt file

» Restart the kernel execution from the marked
synchronization point

4th HPCVirt workshop, Paris, France, April 13, 2010 23

Scheduling Model

» GPU checkpoint after a thread
synchronization

» NOT every thread synchronization
» QUESTION???

> Which thread synchronization should a checkpoint
be invoked?

» FACTORS

> GPU checkpoint overhead
> Chance of a failure occurrence

4th HPCVirt workshop, Paris, France, April 13, 2010 24

Scheduling model (cont.)

O
AU B
h | | th ——iV
m C. N &

P{ZH:CJ.HE)

Perform the checkpoint: (O_|_C) (1 |:> b

MHPCVM workshop, Paris, France, April 13, 2010

Scheduling model (cont.)

O
N I S I
mif | C nth v
J C
n ~
Skip the checkpoint P, [ZCJ + Cj
j=m

Perform the checkpoint: P, (Q.,.C) (1 P,

=—> 0 ‘ Perform the checkpoin

4th HPCVirt workshop, Paris, France, April 13, 2010 26

Model Analysis

» Simulate failures & the wasted time

- total checkpoint overhead + re-computing due to a
failure

» Overhead

> Non-stream: 10 milliseconds - 3 seconds
- Streams: negligible

» MTTF: 12 hours - 7 days
» Thread sync interval: 10 and 30 minutes

4th HPCVirt workshop, Paris, France, April 13, 2010 27

Results (various overhead = size of
transfer)

- -
=T =T
—*— non-streamed
—*— streamed
T T o
E o E o7
[[
= =]
I I
wm o w0
g e g e
‘G ‘5
& = | © T
g ° g °
T t
[ah] i)
(& [
T T @
o o oL o
—*— non-streamed
—— streamed
i (]
o | (=T
T T
10 470 Q30 1380 1850 2310 2770 10 470 Q30 1390 1850 2310 2770
Overhead (ms) Overhead (ms)

Thread sync interval = Thread sync interval =
10 mins 30 mins

Results (various MTTF)

Ly
| o |
™

—*— non-streamed
—#— gtreamed

[}

< o |

@ o™ fi)

1= =

= —

s ks

[k} [k} [Ty

m W=

o = m

=S =

‘G ‘5

un un

ah] [uk] o

o O o

m o]

T t

[ah] i)

b 2

: ¥ m

0o o Tu]
W o 7|
Lo}

\K o
< o 7|
S T 7T 7T T T T T T T T T T T 1

12 24 36 48 60 72 84 96 120 144 168 12 24 36 48 60 72 84 96 120 144 168

MTTF (hour) MTTF (hour)

Thread sync interval = Thread sync interval =
10 mins 30 mins

29

Results (skipped VS non-skipped)

Non-streamed GPU checkpointing

1.2

O Mumber of Skipped Checkpoints
B nNumber of Performed Checkpoints

1.0

na
]

04
]

Froportion of Performed and Skipped Checkpoints
n.z 0.6
| |

0.0
|

12 24 36 48 60 72 84 96 120

MTTF (hour)

Against MTTFs

144

168

Non-streamed GPU checkpointing

1.2

O Mumber of Skipped Checkpoints
B Mumber of Performed Checkpoints

1.0

na
]

0.6
]

Percentages ofYWasted time
0.4
|

0.z
]

0.0
|

10 470 930 1380

1850

Overhead (ms)

2310

Against overheads

2770

30

Conclusions

» GPU checkpointing with Stream to reduce
overhead

» Non-stream and stream checkpoints are
insignificantly different if data transfer is
insignificant

» BUT stream checkpoint potentially performs

better when the checkpoint overhead of
memcopy is larger.

4th HPCVirt workshop, Paris, France, April 13, 2010 31

Future work

» Implement GPU checkpoint/restart
mechanism

» Work on other checkpoint protocol
» Include GPU process migration

4th HPCVirt workshop, Paris, France, April 13, 2010 32

