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Outlines
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» Background - VCCP

» GPU checkpoint protocols: Memcopy vs
simpleStream
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» GPU checkpoint protocols: CUDA Streams
» Restart protocols
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Motivations

» More attention on GPUs
» ORNL-NVDIA 10 petaflop machine
» Large scale GPU cluster —> fault tolerance for

GPU applications

- Normal checkpoint doesn’t help GPU applications
when a failure occurs.

> GPU execution isn’t saved when do checkpoint on
CPU
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VCCP: A Transparent, Coordinated

Checkpointing System for Virtualization-
based Cluster Computing - GOALS

» High transparency

- Checkpoint/restart mechanisms should be
transparent to applications, OS, and runtime
environments; no modification required

» Efficiency

- Checkpoint/restart mechanisms should not
generate unacceptable overheads
- Normal Execution
- Communication

- Checkpointing Delay
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Virtual Cluster Architecture
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Virtual Cluster CheckPointing
(VCCP) Protocol

. Pauce VM computation
. Flush messages out of the
network

. Locally Save State of every VM
. Continue computation
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MHEEP checkpoint protocol

< Head > < compute(01 > < ccccccccc >
| | save
| | :I |
| \ save
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MHEEP checkpoint protocol
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MHEEP checkpoint protocol

< Head > < compute(01 > < compute02 >
o > >

| |
| | | |
| |} success :
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More details in VCCP

» Publication in IEEE cluster 2009
» Average overhead 12%

» Provide transparent checkpoint/restart

4th HPCVirt workshop, Paris, France, April 13, 2010 10



Heterogeneous Computing -
GPGPU

1.
2.
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Our approach

» Long running GPU application

» High (relatively) failure rate in a large scale
GPU cluster in MPI & GPU environment

» Save GPU software state

» Move data back from GPU in low latency

- Memcopy (pauce GPU) vs simpleStream
(concurrency)
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Related Work (CheCUDA)

» “CheCUDA: A Checkpoint/Restart Tool for
CUDA Applications” by H. Takizawa, K. Sato,
K. Komatsu, and H. Kobayashi

» A prototype of an add-on package of BLCR
for GPU checkpointing

» Memcopy approach
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GPGPU Checkpoint protocols

CPU @
Chec'“-"/”t' Reliable Storage
! Migration/ CPU

checkpointing
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GPU checkpoint protocol:
memcopy

Process starts |

H-D memory
copy I

Kernel starts

Syncthread()

I GPU checkpoint

CPU checkpoint/ duration

migration «

Kernel
completes

D-H memory I
copy » i
Process ends l
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CheCUDA: Checkpoint Protocol

1. Copying all the user data in the device
memory to the host memory

2. Writing the current status of the application
and the user data to a checkpoint file
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CheCUDA: Restart protocol

1. Read the checkpoint file

2. Initialize the GPU and recreating CUDA
resources

3. Sending the user data back to the device
memory
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GPU checkpoint protocol:
memcopy vs simpleStream

» Transfer data from device to host = overhead

> Must pauce GPU computation until the copy is
completed

» SimpleStream
- Using latency hiding (Streams) to reduce the
overhead
- CUDA streams = overlap memory copy and kernel
execution
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GPU checkpoint protocol: Streams

Process starts 1
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GPU checkpoint protocol: ensure
consistency

GPU

Process starts 1

H-D memory I >  Kernel starts Code Analysis

copy ; é|
i

After the sync point,
OVERWRITE?

Syncthread()
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GPU checkpoint Protocol: Streams
(cont.)

Process starts 1

After the ;
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GPU Checkpoint Protocol: Streams
(cont.)

Process starts 1

Kernel starts

After the H-D memory
sync point, copy I
OVERWRITE?

Duplicate image

D-H memory |
copy . I

Copy the sync image in GPU

I GPU checkpoint duration

CPU checkpoint/
migration

¢ Kernel completes

Process ends
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GPU Restart Protocol

» Restart CPU
» Transfer the last GPU checkpoint back to CPU
» Recreate CUDA context from the CKpt file

» Restart the kernel execution from the marked
synchronization point
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Scheduling Model

» GPU checkpoint after a thread
synchronization

» NOT every thread synchronization
» QUESTION???

> Which thread synchronization should a checkpoint
be invoked?

» FACTORS

> GPU checkpoint overhead
> Chance of a failure occurrence
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Scheduling model (cont.)
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Scheduling model (cont.)
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Model Analysis

» Simulate failures & the wasted time

- total checkpoint overhead + re-computing due to a
failure

» Overhead

> Non-stream: 10 milliseconds - 3 seconds
- Streams: negligible

» MTTF: 12 hours - 7 days
» Thread sync interval: 10 and 30 minutes
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Results (various overhead = size of
transfer)
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Results (various MTTF)
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Results (skipped VS non-skipped)

Non-streamed GPU checkpointing
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Conclusions

» GPU checkpointing with Stream to reduce
overhead

» Non-stream and stream checkpoints are
insignificantly different if data transfer is
insignificant

» BUT stream checkpoint potentially performs

better when the checkpoint overhead of
memcopy is larger.
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Future work

» Implement GPU checkpoint/restart
mechanism

» Work on other checkpoint protocol
» Include GPU process migration
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