A Parallel Ensemble Kalman Filter Implementation Based On Modified Cholesky Decomposition

Elias D. Nino-Ruiz and Adrian Sandu Computational Science Laboratory, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA enino@vt.edu, sandu@cs.vt.edu

November 16, 2015

Table of contents

[Problem Formulation](#page-2-0)

[Local Ensemble Transform Kalman Filter](#page-7-0)

[EnKF Based on Modified Cholesky Decomposition](#page-9-0) [Estimating](#page-9-0) B^{-1} [EnKF implementations based on MC](#page-13-0) [Domain decomposition](#page-14-0)

[Experimental Settings](#page-16-0)

[Conclusions](#page-25-0)

Problem Formulation I

• We want to estimate
$$
\mathbf{x}^* \in \mathbb{R}^{n \times 1}
$$
,

$$
\mathbf{x}_{k}^* = \mathcal{M}_{t_{k-1} \to t_k} \left(\mathbf{x}_{k-1}^* \right),
$$

model dimension: n.

 \triangleright Based on (assuming Gaussian errors):

 \triangleright A prior estimate (best estimate prior measurements):

$$
\mathbf{x}^b = \mathbf{x}^* + \boldsymbol{\xi} \,, \text{ with } \boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}_n, \, \mathbf{B})
$$

where $\mathbf{B} \in \mathbb{R}^{n \times n}$ is unknown.

 \blacktriangleright A noisy observation:

$$
\mathbf{y} = \mathcal{H}(\mathbf{x}^*) + \boldsymbol{\epsilon}, \text{ with } \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}_m, \, \mathbf{R}),
$$

number of observed model components: m . $\mathbf{R}^{m \times m}$ is the data error covariance matrix. $\mathcal{H}:\mathbb{R}^{n\times 1}\to \mathbb{R}^{m\times 1}.$ With $m\ll n$ or $m< n.$

Virginia

Problem Formulation II

 \triangleright Bayesian approximation (posterior state):

$$
\mathbf{x}^{\mathbf{a}} = \mathbf{x}^{\mathbf{b}} + \mathbf{B} \cdot \mathbf{H}^{\mathsf{T}} \cdot \left[\mathbf{R} + \mathbf{H} \cdot \mathbf{B} \cdot \mathbf{H}^{\mathsf{T}} \right]^{-1} \cdot \mathbf{d} \in \mathbb{R}^{n \times 1}
$$

where $\mathbf{d}=\mathbf{y}-\mathcal{H}\left(\mathbf{x}^b\right)\in \mathbb{R}^{m\times 1}$ and $\mathcal{H}'\approx \mathbf{H}\in \mathbb{R}^{m\times N}.$

- \blacktriangleright How can we estimate **B**?
- ► Background error statistics of any model state $\mathbf{x} \in \mathbb{R}^{n \times 1}$:

$$
\mathbf{x} \sim \mathcal{N}\left(\mathbf{x}^b, \, \mathbf{B}\right) \, .
$$

Problem Formulation III

 \blacktriangleright Empirical moments of an ensemble:

$$
\textbf{X}^b = \left[\textbf{x}^{b[1]}, \textbf{x}^{b[2]}, \ldots, \textbf{x}^{b[N]} \right] \in \mathbb{R}^{n \times N}.
$$

$$
\mathbf{x}^b \approx \overline{\mathbf{x}}^b = \frac{1}{N} \sum_{i=1}^N \mathbf{x}^{b[i]} \in \mathbb{R}^{n \times 1}, \quad \mathbf{B} \approx \mathbf{P}^b = \mathbf{S} \cdot \mathbf{S}^T \in \mathbb{R}^{n \times n}
$$

where
$$
\mathbf{S} = \frac{1}{\sqrt{N-1}} \cdot \left[\mathbf{X}^b - \overline{\mathbf{x}}^b \otimes \mathbf{1}_N^T \right] \in \mathbb{R}^{n \times N}
$$
.

[Problem Formulation](#page-2-0) [5/29] November 16, 2015. (http://csl.cs.vt.edu)

Compu

Problem Formulation IV

 \blacktriangleright The posterior (analysis) ensemble:

$$
\mathbf{X}^{\mathsf{a}} = \mathbf{X}^{\mathsf{b}} + \mathbf{P}^{\mathsf{b}} \cdot \mathbf{H}^{\mathsf{T}} \cdot \left[\mathbf{R} + \mathbf{H} \cdot \mathbf{P}^{\mathsf{b}} \cdot \mathbf{H}^{\mathsf{T}} \right]^{-1} \cdot \mathbf{D} \in \mathbb{R}^{n \times N},
$$

the *i*-th column of $\mathbf{D} \in \mathbb{R}^{m \times N}$ reads:

$$
\mathbf{d}^{[i]} = \mathbf{y} + \boldsymbol{\epsilon}^{[i]} - \mathbf{H} \cdot \mathbf{x}^{b[i]} \in \mathbb{R}^{m \times 1}, \text{ for } 1 \leq i \leq N,
$$

with (stochastic version of the filter):

 $\epsilon^{[i]} \sim \mathcal{N}\left(\bm{0}_{m},\,\bm{\mathsf{R}}\right)$.

Problem Formulation V

- \triangleright Unfortunately, the number of samples N is much lower than the model dimension $n \gg N$.
	- \blacktriangleright **P**^b is low-rank. (Spurious correlations)
	- \blacktriangleright **X**^a is computed in the ensemble space (few degrees of freedom)
- \triangleright Model dimensions are in the order of billions, while ensemble sizes in the order of hundreds.
- \triangleright Model propagations are computationally expensive.
- \triangleright Computational effort of the analysis is high.
- \triangleright We do need HPC not only to speedup computations but to have enough memory to represent ensemble members and to perform linear algebra computations.

Local Ensemble Transform Kalman Filter (LETKF) I

- \triangleright One of the best parallel ensemble based implementations.
- \blacktriangleright Analysis equations:
	- ► Perturbations: $\mathbf{U} = \mathbf{X}^b \overline{\mathbf{x}}^b \otimes \mathbf{1}_N^T \in \mathbb{R}^{n \times N}$.
	- ▶ Optimality in ensemble space: $\mathbf{Q} = \mathbf{H} \cdot \mathbf{U} \in \mathbb{R}^{m \times N}$.

$$
\widetilde{\mathbf{P}}^{\mathsf{a}} = [(N-1) \cdot \mathbf{I}_{N \times N} + \mathbf{Q}^{T} \cdot \mathbf{R}^{-1} \cdot \mathbf{Q}]^{-1} \in \mathbb{R}^{N \times N}
$$

\n
$$
\mathbf{w}^{\mathsf{a}} = \widetilde{\mathbf{P}}^{\mathsf{a}} \cdot \mathbf{Q}^{T} \cdot \mathbf{R}^{-1} \cdot [\mathbf{y} - \mathbf{H} \cdot \overline{\mathbf{x}}^{b}]
$$

\n
$$
\mathbf{W} = \mathbf{w}^{\mathsf{a}} \otimes \mathbf{1}_{N}^{T} + \mathbf{W}^{\mathsf{a}} \in \mathbb{R}^{N \times N}, \mathbf{W}^{\mathsf{a}} = [(N-1) \cdot \widetilde{\mathbf{P}}^{\mathsf{a}}]^{1/2} \in \mathbb{R}^{N \times N}
$$

 \blacktriangleright Analysis ensemble:

$$
\textbf{X}^{\mathsf{a}} = \overline{\mathbf{x}}^{\mathsf{b}} \otimes \mathbf{1}_N^{\mathsf{T}} + \textbf{U} \cdot \textbf{W} \in \mathbb{R}^{n \times N} \,.
$$

 \triangleright Domain localization [OHS+04, Kep00]:

Local Ensemble Transform Kalman Filter (LETKF) II

[Local Ensemble Transform Kalman Filter](#page-7-0) [9/29] November 16, 2015. (http://csl.cs.vt.edu)

Estimating B^{-1} I

- ► When m_i and m_j are conditionally independent, ${\bf C}^{-1}{}_{m_i,m_j}=0.$
- ► We want to estimate B^{-1} :
	- ► Recall $\mathbf{U} = \mathbf{X}^b \overline{\mathbf{x}}^b \otimes \mathbf{1}_N^T \in \mathbb{R}^{n \times N}$. Thus, $\mathbf{u}^{[i]} \sim \mathcal{N}(\mathbf{0}_n, \mathbf{B})$, for $1 \le i \le N$.
	- ► Let $\mathbf{x}^{[i]} \in \mathbb{R}^{N \times 1}$ the vector holding the *i*-th row across all columns of **U**, for $1 \leq i \leq n$.
	- ► Then, the approximation of B^{-1} arises from:

$$
\mathbf{x}^{[i]} = \sum_{j=1}^{i-1} \mathbf{x}^{[j]} \cdot \beta_{i,j} + \boldsymbol{\xi}^{[i]} \in \mathbb{R}^{N \times 1}
$$

Estimating B^{-1} II

 \triangleright By the modified Cholesky (MC) decomposition for inverse covariance matrix estimation:

$$
\mathbf{B}^{-1} \approx \widehat{\mathbf{B}}^{-1} = \mathbf{T}^{\mathsf{T}} \cdot \mathbf{D}^{-1} \cdot \mathbf{T} \in \mathbb{R}^{n \times n}
$$

$$
\mathbf{B} \approx \widehat{\mathbf{B}} = \mathbf{T}^{-1} \cdot \mathbf{D} \cdot \mathbf{T}^{-1}^{\mathsf{T}} \in \mathbb{R}^{n \times n}
$$

where $\textbf{T} \in \mathbb{R}^{n \times n}$ is an unitary lower triangular matrix with ${\{\mathbf T\}}_{i,j} = -\beta_{i,j}$ and $\mathbf{D} \in {\rm I\!R}^{n \times n}$ is a diagonal matrix with $\left\{ \mathbf{D}\right\} _{i,i}=\mathsf{var}\left(\boldsymbol{\xi}^{[i]}\right)$, for $1\leq j < i \leq n.$

► $\widehat{\mathbf{B}}^{-1}$ can be sparse, $\widehat{\mathbf{B}}$ is not necessarily sparse. Structure of $\widehat{\mathbf{B}}^{-1}$ depends on T.

Choosing the predecessors

(f) Row-major (g) Column-major

[EnKF Based on Modified Cholesky DecompositionEstimating](#page-9-0) \mathbf{B}^{-1} [12/29] November 16, 2015. (http://csl.cs.vt.edu)

[EnKF Based on Modified Cholesky DecompositionEstimating](#page-9-0) \mathbf{B}^{-1} [13/29] November 16, 2015. (http://csl.cs.vt.edu)

Virginia \prod Tech EnKF formulations based on modified Cholesky decomposition for inverse background error estimation

 \blacktriangleright Primal:

$$
\mathbf{X}^{a} = \mathbf{X}^{b} + \left[\hat{\mathbf{B}}^{-1} + \mathbf{H}^{T} \cdot \mathbf{R}^{-1} \cdot \mathbf{H}\right]^{-1} \cdot \mathbf{H}^{T} \cdot \mathbf{R}^{-1} \cdot \left[\mathbf{Y}^{s} - \mathbf{H} \cdot \mathbf{X}^{b}\right]
$$

\n**b** Dual:

$$
\mathbf{X}^{\mathsf{a}} = \mathbf{X}^{\mathsf{b}} + \mathbf{X} \cdot \mathbf{V}^{\mathsf{T}} \cdot \left[\mathbf{R} + \mathbf{V} \cdot \mathbf{V}^{\mathsf{T}} \right]^{-1} \cdot \left[\mathbf{Y}^{\mathsf{s}} - \mathbf{H} \cdot \mathbf{H} \cdot \mathbf{X}^{\mathsf{b}} \right]
$$

where $\textbf{T} \cdot \textbf{X} = \textbf{D}^{1/2} \in \mathbb{R}^{n \times n}$ and $\textbf{V} = \textbf{H} \cdot \textbf{X} \in \mathbb{R}^{m \times n}$.

 \triangleright Efficient implementations [NRSA14, NRS15].

Domain Decomposition

[EnKF Based on Modified Cholesky Decomposition](#page-9-0)[Domain decomposition](#page-14-0) [15/29] November 16, 2015. (http://csl.cs.vt.edu)

Boundary Information

[EnKF Based on Modified Cholesky Decomposition](#page-9-0)[Domain decomposition](#page-14-0) [16/29] November 16, 2015. (http://csl.cs.vt.edu)

Virginia Tech

AT-GCM - SPEEDY (Numerical Model)

- \triangleright SPEEDY is a simplified GCM developed at ICTP by Franco Molteni and Fred Kucharski.
- \triangleright Nicknamed SPEEDY, for "Simplified Parameterizations, privitivE-Equation DYnamics"
- \blacktriangleright It is a hydrostatic, s-coordinate, spectral-transform model in the vorticity-divergence form, with semi-implicit treatment of gravity waves.
- \triangleright 8 layers, u, v, T and sh.
- \blacktriangleright T-63 resolution (96 x 192)

Blueridge Super Computer @ VT

- \triangleright BlueRidge is a 408-node Cray CS-300 cluster.
- \triangleright Each node is outfitted with two octa-core Intel Sandy Bridge CPUs and 64 GB of memory.
- \triangleright Total of 6,528 cores and 27.3 TB of memory systemwide.
- \blacktriangleright Eighteen nodes have 128 GB of memory.
- \blacktriangleright In addition, 130 nodes are outfitted with two Intel MIC (Xeon Phi) coprocessors.

Experimental settings

- \triangleright Number of ensemble members 96.
- \triangleright 3 radius of influence are considered: 3, 4, 5.
- Model is propagated for 2 days and then observations are assimilated.
- \triangleright Number of processors: 6 computing nodes (96 processors) up to 128 computing nodes (2048 processors)
- ► Fortran 90 and 77, MPI, LAPACK and BLAS.
- \triangleright 3 different observational networks.

Observational networks

Figure : Sparse observational networks. Observed components in black. p denotes percentage of observed model components.

RMSE for some configurations.

Initial snapshots for $r = 5$ and $p \sim 4\%$ for v

[Experimental Settings](#page-16-0) [22/29] November 16, 2015. (http://csl.cs.vt.edu) Virginia]Tech

Initial snapshots for $r = 5$ and $p \sim 4\%$ for u

[Experimental Settings](#page-16-0) [23/29] November 16, 2015. (http://csl.cs.vt.edu) Virginia]Tech

RMSE for different variables and $#$ of computing nodes.

Elapsed time.

Conclusions

- \triangleright The proposed implementations outperforms the LETKF under the RMSE metric.
- \triangleright Parallel resources and domain decompositions can be exploited in order to speedup the assimilation process.
- \triangleright Localization is implicit. Domain decomposition is used just for computational reasons.
- \triangleright The computational effort of the proposed method makes it attractive for the use under realistic scenarios.

Thank You.

(John 3:16) For God so loved the world that he gave his one and only Son, that whoever believes in him shall not perish but have eternal life.

- [Kep00] Christian L. Keppenne. Data Assimilation into a Primitive-Equation Model with a Parallel Ensemble Kalman Filter. Monthly Weather Review, 128(6):1971–1981, 2000.
- [NRS15] EliasD. Nino-Ruiz and Adrian Sandu. Ensemble kalman filter implementations based on shrinkage covariance matrix estimation. Ocean Dynamics, 65(11):1423–1439, 2015.
- [NRSA14] EliasD. Nino Ruiz, Adrian Sandu, and Jeffrey Anderson. An Efficient Implementation of the Ensemble Kalman Filter Based on an Iterative ShermanMorrison Formula. Statistics and Computing, pages 1–17, 2014.
- [OHS⁺04] Edward Ott, Brian R. Hunt, Istvan Szunyogh, Aleksey V. Zimin, Eric J. Kostelich, Matteo Corazza, Eugenia Kalnay, D. J. Patil, and James A. Yorke. A local ensemble kalman filter for atmospheric data assimilation. Tellus A, 56(5):415–428, 2004.

Virginia

$$
\begin{aligned}\n\left[\widehat{\mathbf{B}}^{-1} + \mathbf{H}^{\mathsf{T}} \cdot \mathbf{R}^{-1} \cdot \mathbf{H}\right]^{-1} &= \left[\mathbf{X}^{\mathsf{T}} \cdot \mathbf{X} + \mathbf{H}^{\mathsf{T}} \cdot \mathbf{R}^{-1} \mathbf{H}\right]^{-1} \\
&= \left\{\mathbf{X}^{\mathsf{T}} \cdot \left[\mathbf{I}_{n \times n} + \mathbf{Q} \cdot \mathbf{Q}^{\mathsf{T}}\right] \cdot \mathbf{X}\right\}^{-1} \\
&= \mathbf{X}^{-1} \cdot \left[\mathbf{I}_{n \times n} + \mathbf{Q} \cdot \mathbf{Q}^{\mathsf{T}}\right]^{-1} \cdot \mathbf{X}^{-\mathsf{T}}\n\end{aligned}
$$

where $\mathsf{X}^\mathcal{T}\cdot \mathsf{Q} = \mathsf{H}^\mathcal{T}\cdot \mathsf{R}^{-1/2}.$

