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Problem Formulation I

I We want to estimate x∗ ∈ Rn×1,

x∗k =Mtk−1→tk

(
x∗k−1

)
,

model dimension: n.

I Based on (assuming Gaussian errors):
I A prior estimate (best estimate prior measurements):

xb = x∗ + ξ , with ξ ∼ N (0n, B)

where B ∈ Rn×n is unknown.
I A noisy observation:

y = H (x∗) + ε, with ε ∼ N (0m, R) ,

number of observed model components: m. Rm×m is the data error
covariance matrix. H : Rn×1 → Rm×1. With m� n or m < n.
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Problem Formulation II

I Bayesian approximation (posterior state):

xa = xb + B ·HT ·
[
R + H · B ·HT

]−1
· d ∈ Rn×1

where d = y −H
(
xb
)
∈ Rm×1 and H′ ≈ H ∈ Rm×N .

I How can we estimate B?

I Background error statistics of any model state x ∈ Rn×1:

x ∼ N
(
xb, B

)
.
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Problem Formulation III

I Empirical moments of an ensemble:

Xb =
[
xb[1], xb[2], . . . , xb[N]

]
∈ Rn×N .

xb ≈ xb =
1

N

N∑
i=1

xb[i ] ∈ Rn×1 , B ≈ Pb = S · ST ∈ Rn×n

where S = 1√
N−1
·
[
Xb − xb ⊗ 1TN

]
∈ Rn×N .
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Problem Formulation IV

I The posterior (analysis) ensemble:

Xa = Xb + Pb ·HT ·
[
R + H · Pb ·HT

]−1
·D ∈ Rn×N ,

the i-th column of D ∈ Rm×N reads:

d[i ] = y + ε[i ] −H · xb[i ] ∈ Rm×1, for 1 ≤ i ≤ N,

with (stochastic version of the filter):

ε[i ] ∼ N (0m, R) .
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Problem Formulation V

I Unfortunately, the number of samples N is much lower than the
model dimension n� N.

I Pb is low-rank. (Spurious correlations)
I Xa is computed in the ensemble space (few degrees of freedom)

I Model dimensions are in the order of billions, while ensemble sizes in
the order of hundreds.

I Model propagations are computationally expensive.

I Computational effort of the analysis is high.

I We do need HPC not only to speedup computations but to have
enough memory to represent ensemble members and to perform linear
algebra computations.
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Local Ensemble Transform Kalman Filter (LETKF) I

I One of the best parallel ensemble based implementations.

I Analysis equations:
I Perturbations: U = Xb − xb ⊗ 1TN ∈ Rn×N .
I Optimality in ensemble space: Q = H ·U ∈ Rm×N ,

P̃a =
[
(N − 1) · IN×N + QT · R−1 ·Q

]−1 ∈ RN×N

wa = P̃a ·QT · R−1 ·
[
y −H · xb

]
W = wa ⊗ 1TN + Wa ∈ RN×N , Wa =

[
(N − 1) · P̃a

]1/2

∈ RN×N

I Analysis ensemble:

Xa = xb ⊗ 1TN + U ·W ∈ Rn×N .

I Domain localization [OHS+04, Kep00]:
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Local Ensemble Transform Kalman Filter (LETKF) II
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Estimating B−1 I

I When mi and mj are conditionally independent, C−1
mi ,mj = 0.

I We want to estimate B−1:
I Recall U = Xb − xb ⊗ 1TN ∈ Rn×N . Thus, u[i ] ∼ N (0n, B), for

1 ≤ i ≤ N.
I Let x[i ] ∈ RN×1 the vector holding the i-th row across all columns of

U, for 1 ≤ i ≤ n.
I Then, the approximation of B−1 arises from:

x[i ] =
i−1∑
j=1

x[j] · βi,j + ξ[i ] ∈ RN×1
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Estimating B−1 II

I By the modified Cholesky (MC) decomposition for inverse covariance
matrix estimation:

B−1 ≈ B̂−1 = TT ·D−1 · T ∈ Rn×n

B ≈ B̂ = T−1 ·D · T−1T ∈ Rn×n

where T ∈ Rn×n is an unitary lower triangular matrix with
{T}i,j = −βi,j and D ∈ Rn×n is a diagonal matrix with

{D}i,i = var
(
ξ[i ]
)

, for 1 ≤ j < i ≤ n.I

I B̂−1 can be sparse, B̂ is not necessarily sparse. Structure of B̂−1

depends on T.
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Choosing the predecessors

(f) Row-major (g) Column-major

(h) r = 1 (i) Predecess.
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EnKF formulations based on modified Cholesky
decomposition for inverse background error estimation

I Primal:

Xa = Xb +
[
B̂−1 + HT · R−1 ·H

]−1
·HT · R−1 ·

[
Ys −H · Xb

]
I Dual:

Xa = Xb + X · VT ·
[
R + V · VT

]−1
·
[
Ys −H ·H · Xb

]
where T · X = D1/2 ∈ Rn×n and V = H · X ∈ Rm×n.

I Efficient implementations [NRSA14, NRS15].
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Domain Decomposition

EnKF Based on Modified Cholesky DecompositionDomain decomposition [15/29]
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Boundary Information
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AT-GCM - SPEEDY (Numerical Model)

I SPEEDY is a simplified GCM developed at ICTP by Franco Molteni
and Fred Kucharski.

I Nicknamed SPEEDY, for ”Simplified Parameterizations,
privitivE-Equation DYnamics”

I It is a hydrostatic, s-coordinate, spectral-transform model in the
vorticity-divergence form, with semi-implicit treatment of gravity
waves.

I 8 layers, u, v , T and sh.

I T-63 resolution (96 x 192)
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Blueridge Super Computer @ VT

I BlueRidge is a 408-node Cray CS-300 cluster.

I Each node is outfitted with two octa-core Intel Sandy Bridge CPUs
and 64 GB of memory.

I Total of 6,528 cores and 27.3 TB of memory systemwide.

I Eighteen nodes have 128 GB of memory.

I In addition, 130 nodes are outfitted with two Intel MIC (Xeon Phi)
coprocessors.
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Experimental settings

I Number of ensemble members 96.

I 3 radius of influence are considered: 3, 4, 5.

I Model is propagated for 2 days and then observations are assimilated.

I Number of processors: 6 computing nodes (96 processors) up to 128
computing nodes (2048 processors)

I Fortran 90 and 77, MPI, LAPACK and BLAS.

I 3 different observational networks.
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Observational networks

(a) H[1], p ∼ 12% (b) H[2], p ∼ 6% (c) H[3], p ∼ 4%

Figure : Sparse observational networks. Observed components in black. p
denotes percentage of observed model components.

Experimental Settings [20/29]

November 16, 2015. (http://csl.cs.vt.edu)



RMSE for some configurations.
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(b) r = 4, p ∼ 12%, v
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(c) r = 5, p ∼ 6%, u

Experimental Settings [21/29]

November 16, 2015. (http://csl.cs.vt.edu)



Initial snapshots for r = 5 and p ∼ 4% for v

(a) Reference

(b) Background (c) EnKF-MC (d) LETKF
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Initial snapshots for r = 5 and p ∼ 4% for u

(a) Reference

(b) Background (c) EnKF-MC (d) LETKF
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RMSE for different variables and # of computing nodes.
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(c) r = 5, p ∼ 4%, sh
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Elapsed time.

Computing nodes (x 16 processors)
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Conclusions

I The proposed implementations outperforms the LETKF under the
RMSE metric.

I Parallel resources and domain decompositions can be exploited in
order to speedup the assimilation process.

I Localization is implicit. Domain decomposition is used just for
computational reasons.

I The computational effort of the proposed method makes it attractive
for the use under realistic scenarios.
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Thank You.

(John 3:16) For God so loved the world that he gave his one and only
Son, that whoever believes in him shall not perish but have eternal life.
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[
B̂−1 + HT · R−1 ·H

]−1
=

[
XT · X + HT · R−1H

]−1

=
{
XT ·

[
In×n + Q ·QT

]
· X
}−1

= X−1 ·
[
In×n + Q ·QT

]−1
· X−T

where XT ·Q = HT · R−1/2.
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