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TSQR: Tall-Skinny QR

orthogonalizes a set of dense columns vectors V' (m-by-n, m > n),

-
R
Vv Q

where Q is a set of orthogonal vectors, and R is upper triangular.

> important computational kernels:

> 1st part of this talk: n = O(10)
“Communication-avoiding” s-step Krylov (n = s)

> 2nd part of this talk: n = O(100)
Random sampling for low-rank matrix approximation (n = k + ¢)
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TSQR Algorithms for n = 0(10)
Many ways to compute TSQR:
» Householder QR (with O(s) reductions)

- Householder transform each column based on BLAS-1,2 xGEQR2

» Modified Gram-Schmidt (with O(s) reductions)
- ortho each column against each column based on BLAS-2,1 xGEMV, xDOT

» Classical Gram-Schmidt (with O(s) reductions)
- ortho each column against prev columns based on BLAS-2,1 xGEMV, xDOT

» Cholesky QR (or SVQR) (with O(1) reductions)
- ortho all columns against prev columns based on BLAS-3 xGEMM, xTRSM

» CAQR (with O(1) reductions)

- ortho all columns against prev columns based on tree-reduction BLAS-1,2 xGEQR2
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CholQR factorization for TSQR [A. Stathopoulos and K. Wu. 2002]

Step 1 Gram-matrix formation G := VTV (3ns? ops on GPUs).
Step 2 Cholesky factorization RTR := G (%s® ops on CPUs).

Step 3 Backward-substitution @ := VR™1 (1ns® ops on GPUs).

100,000
ol = NS | Seh
-1
G A R R G R
Step 1: Block dot-products ~100. Ogg Step 2: Cholesky factorization Q v Step 3: Triangular solve

» most of flops using BLAS-3.

> only one global communication (reduction to form G).

— great performance on modern computer
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TSQR Performance (16-core SandyBridge with three M2090 Fermi, s = 30)

TSQR Performance on 1 GPU
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TSQR Performance on 3 GPUs
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» CholQR shows superior performance based on BLAS-3

> great performance on distributed-memory system
with one global reduce [SC'14]




TSQR Stability:

» trade-off between performance and stability
- CholQR obtains great performance with minimum communication.

- its orthogonality error depends quadratically on condition number of V.

[ [ 1=QTQI [ # flops, GPU kernel | # GPU-CPU comm.
MGS O(e - k(V)) 2ns?, BLAS-1 xDOT 0(s?)
CGS O(e-w(V)*~1) | 2ns?, BLAS-2 xGEMV O(s)
CholQR | O(e- k(V)?) 2ns?, BLAS-3 xGEMM o(1)
SVQR O(e - K(V)?) 2ns?, BLAS-3 xGEMM o(1)
CAQR | O(e) 4ns?, BLAS-1,2 xGEQR2 0(1)

» it often requires reorthogonalization

> it could fail if (V) > e 1/2,
eg., if K(V) > 108 for working double precision.
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Mixed Precision CholQR

» Remove “square” in error bound by selectively using “doubled” precision:

Step 1 Gram-matrix formation G := VTV (V in double)
doubled-precision on GPUs.

Step 2 Cholesky factorization RTR := G

doubled-precision on CPUs.

Step 3 Backward-substitution Q := VR™1
working-precision on GPUs.

— orthogonality error depends linearly on (V) [sIsC'15]
1= @RIl < O(er(V) + (er(V))?) and [| Q]| < 1+ O(er(V)

— may require software-emulated arithmetics for doubled-precision
e.g., for working 64-bit double,
- we used double-double to emumerate quadruple precision
[Y. Hida, X. Li, and D. Bailey, '00]

- computation increases by 8.5x

- but with small communication overhead (only volume doubles to form G)

- CholQR is communication-bounded, 1;” flops per read

- mixed-precidion CholQR reads V in double
and accumulates intermediate results in double-double
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Batched GPU kernels for block inner-products

~10 ~100,000

“batched” xGEMM/xSYRK kernel o] =
G

1. thread block to compute partial block product

2. local reduction to compute local Gram matrix

Step 1: Block dot-products
3. global all reduce to form final Gram matrix

brute-force tune for dimension and precision on GPU
(by Tim Dong)

= ~np- <N

vT G
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Block inner-products in double-double vs. double precision
» optimized batched xGEMM kernel for block inner-product, n = 0(10%), s = 0(10).

> 1.7x speedups over CUBLAS 5.5 for d-precision.
30% of the peak based on memory bandwidth

> 16X more ops for dd-precision (Cray).
- input matrix in d-precision, compute intermediate results in dd-precision
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Block inner-products in double vs. double-double precision

» optimized batched xGEMM kernel for block inner-product, n = 0(10%), s = 0(10).

Relative execution time

>

>

1.7x speedups over CUBLAS 5.5 for d-precision.

16 more ops for dd-precision (Cray).

memory-bound operation.

— 4.5% or 3.5Xx slower on Fermi or Kepler.
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Mixed Precision CholQR Performance

Number of columns=20 (Tesla K20c, 1310/250=5.2) Number of columns=20 (s)
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> only about 30% of d-CholQR in d-GEMM.

» dd-CholQR 8.5 ops, but 1.7x slower than d-CholQR
- dd-CholQR may be competitive with 2xd-CholQR
d- or dd-CholQR could fail if K(V) > e /2 or > 71

» CA-Krylov performance can be improved [VECPAR'14]
- reduced orthogonalization time, larger step size, or faster convergence
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Extension to orthogonalize many columns [ScalA’15]

v

Motivation: random sampling of large sparse matrix, n = 0(100)

v

CholQR performs 1;” flops on each numerical value read.

v

As n increases,
- it becomes more compute-bound

- mixed-precision CholQR becomes slower

v

Use mixed-precision CholQR in block MGS
- BMBS and then CholQR
same bound by using mCholQR+CholQR
with comp. overhead of %x
- restarted CA-Krlov
to orthogonalize s vectors at a time
to generate total of n basis vectors

Q, Q, Q, X, X
—

1. Orth X, against Q,; by BMGS
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Performance of BMGS: m = 100K on one GPU
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with n = 200,
» mCholQR was 7.1x slower than CholQR (with 8.5x ops)
» mB1.5MGS was 1.7x slower than CholQR (with 1.8x ops)
and was 4.1x faster than mCholQR
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Algorithmic variant with implicit Q;:
> each Q implicitly stored with Xj and R;j, i.e., @ := X;R ",
BCGS: X 1= X; — Xuj-1(G (X} X))
> stable if X; is well conditioned
— use implicit form for re-orthogonalization, i.e., Q; := Q,-ijjl
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Performance of BMGS: (m, n) = (500K, 200) on multiple GPUs
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compared to CholQR,
» B1.5MGS communicates n; X more

» mCholQR has greater bottleneck with ddPOTRF
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Final Remarks

» Mixed-precision CholQR

> performs 8.5x more computation

reduces 2x more words, O(n?) with n < m
> was 1.4x slower when n = O(10)

> was 7.1x slower when n = O(100)

v

> smaller overhead if supported by hardware (e.g., single)

» BMGS combined with dd-CholQR + d-CholQR for TSQR

» performs &2 x more computation,

where n; is number of block columns
> was 1.7x slower when n = O(100)

» communicates n: X more often
Current Work
» Numerical studies and theoretical bounds

» CAQR [J. Demmel, L. Grigori, M. Hoemmen, J. Langou, 2012]
using “batched” QR
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Thank you!!

Mixed-precision CholQR/BMGS 17/16



