Mixed-precision orthogonalization schemes:

Performance on multicore CPU with GPUs

Ichitaro Yamazaki, Stanimire Tomov, Jakub Kurzak, Jack Dongarra
University of Tennessee, Knoxville, USA

Jesse Barlow
Pennsylvania State University, Pennsylvania, USA

Latest Advances in Scalable Algorithms for Large-scale Systems
Austin, TX, USA, 11-16-2015

Mixed-precision CholQR/BMGS 1/16

TSQR: Tall-Skinny QR

orthogonalizes a set of dense columns vectors V' (m-by-n, m > n),

-
R
Vv Q

where Q is a set of orthogonal vectors, and R is upper triangular.

> important computational kernels:

> 1st part of this talk: n = O(10)
“Communication-avoiding” s-step Krylov (n = s)

> 2nd part of this talk: n = O(100)
Random sampling for low-rank matrix approximation (n = k + ¢)

Mixed-precision CholQR/BMGS 2/16

TSQR Algorithms for n = 0(10)
Many ways to compute TSQR:
» Householder QR (with O(s) reductions)

- Householder transform each column based on BLAS-1,2 xGEQR2

» Modified Gram-Schmidt (with O(s) reductions)
- ortho each column against each column based on BLAS-2,1 xGEMV, xDOT

» Classical Gram-Schmidt (with O(s) reductions)
- ortho each column against prev columns based on BLAS-2,1 xGEMV, xDOT

» Cholesky QR (or SVQR) (with O(1) reductions)
- ortho all columns against prev columns based on BLAS-3 xGEMM, xTRSM

» CAQR (with O(1) reductions)

- ortho all columns against prev columns based on tree-reduction BLAS-1,2 xGEQR2

Mixed-precision CholQR/BMGS 3/16

CholQR factorization for TSQR [A. Stathopoulos and K. Wu. 2002]

Step 1 Gram-matrix formation G := VTV (3ns? ops on GPUs).
Step 2 Cholesky factorization RTR := G (%s® ops on CPUs).

Step 3 Backward-substitution @ := VR™1 (1ns® ops on GPUs).

100,000
ol = NS | Seh
-1
G A R R G R
Step 1: Block dot-products ~100. Ogg Step 2: Cholesky factorization Q v Step 3: Triangular solve

» most of flops using BLAS-3.

> only one global communication (reduction to form G).

— great performance on modern computer

Mixed-precision CholQR/BMGS 4/16

TSQR Performance (16-core SandyBridge with three M2090 Fermi, s = 30)

TSQR Performance on 1 GPU

Effective Gflop/s
8 8 8 8 8 3

>

3; —&—CholQR

—7—SVQR
——-CGS
CAQR
—A—MGS
—*— LAPACK

¢ A A A A A A A
AR A A NN

>

100K 500K
Number of Rows (n)

1000K

Effective Gflop/s

300

[IPDPS’14]

TSQR Performance on 3 GPUs

250

n
8
3

o
3

3
8

50

—E—CholQR
—%—SVaR
—6-CGS
CAQR
—A—MGS
—>%— LAPACK

—

100K 500K
Number of Rows (n)

» CholQR shows superior performance based on BLAS-3

> great performance on distributed-memory system
with one global reduce [SC'14]

TSQR Stability:

» trade-off between performance and stability
- CholQR obtains great performance with minimum communication.

- its orthogonality error depends quadratically on condition number of V.

[[1=QTQI [# flops, GPU kernel | # GPU-CPU comm.
MGS O(e - k(V)) 2ns?, BLAS-1 xDOT 0(s?)
CGS O(e-w(V)*~1) | 2ns?, BLAS-2 xGEMV O(s)
CholQR | O(e- k(V)?) 2ns?, BLAS-3 xGEMM o(1)
SVQR O(e - K(V)?) 2ns?, BLAS-3 xGEMM o(1)
CAQR | O(e) 4ns?, BLAS-1,2 xGEQR2 0(1)

» it often requires reorthogonalization

> it could fail if (V) > e 1/2,
eg., if K(V) > 108 for working double precision.

Mixed-precision CholQR/BMGS 6/16

Mixed Precision CholQR

» Remove “square” in error bound by selectively using “doubled” precision:

Step 1 Gram-matrix formation G := VTV (V in double)
doubled-precision on GPUs.

Step 2 Cholesky factorization RTR := G

doubled-precision on CPUs.

Step 3 Backward-substitution Q := VR™1
working-precision on GPUs.

— orthogonality error depends linearly on (V) [sIsC'15]
1= @RIl < O(er(V) + (er(V))?) and [| Q]| < 1+ O(er(V)

— may require software-emulated arithmetics for doubled-precision
e.g., for working 64-bit double,
- we used double-double to emumerate quadruple precision
[Y. Hida, X. Li, and D. Bailey, '00]

- computation increases by 8.5x

- but with small communication overhead (only volume doubles to form G)

- CholQR is communication-bounded, 1;” flops per read

- mixed-precidion CholQR reads V in double
and accumulates intermediate results in double-double

Mixed-precision CholQR/BMGS 7/16

Batched GPU kernels for block inner-products

~10 ~100,000

“batched” xGEMM/xSYRK kernel o] =
G

1. thread block to compute partial block product

2. local reduction to compute local Gram matrix

Step 1: Block dot-products
3. global all reduce to form final Gram matrix

brute-force tune for dimension and precision on GPU
(by Tim Dong)

= ~np- <N

vT G

ion CholQR/BMGS 8/16

Block inner-products in double-double vs. double precision
» optimized batched xGEMM kernel for block inner-product, n = 0(10%), s = 0(10).

> 1.7x speedups over CUBLAS 5.5 for d-precision.
30% of the peak based on memory bandwidth

> 16X more ops for dd-precision (Cray).
- input matrix in d-precision, compute intermediate results in dd-precision

Tesla M2090 (666/177=3.8) Tesla K20c (1310/250=5.2)
G-SYRK G-SYRK
—6—d-GEMM —6—d-GEMI
4d-SYRK (Cray) dd-SYRK (Cray)
250 dd-SYRK (IEEE) 250 dd-SYRK (IEEE)
—— dd-GEMM (Cray) —— dd-GEMM (Cray)
—5— dd-GEMM (IEEE) —5— dd-GEMM (IEEE)
——CUBLAS 55 ——CUBLAS 55

DGEMM Gflop/s
DGEMM Gflop/s

0 50K 100K 150K 200K 250K Q00K 350K 400K 450K 500K 0 50K

100K 150K 200K 250K 300K 350K 400K 450K 500K
Number of rows (n))

Number of rows (n]

Block inner-products in double vs. double-double precision

» optimized batched xGEMM kernel for block inner-product, n = 0(10%), s = 0(10).

Relative execution time

>

>

1.7x speedups over CUBLAS 5.5 for d-precision.

16 more ops for dd-precision (Cray).

memory-bound operation.

— 4.5% or 3.5Xx slower on Fermi or Kepler.

Tesla M2090 (666/177=3.8)

SN NI B A
v

Mo XK

5 dd-GEMM (Cray)
dd-SYRK (Cray)

50K

100K 150K 200K 250K 300K 350K 400K 450K 500K
Number of rows (n)

Tesla K20c (1310/250=5.2)

Relative execution time
e
Pa

——dd-GEMM (Cray)
RK (Cray)

0 50K

10/16

100K 150K 200K 250K 300K 350K 400K 450K 500K
Number of rows (n)

Mixed Precision CholQR Performance

Number of columns=20 (Tesla K20c, 1310/250=5.2) Number of columns=20 (s)

© ®
£ B 50|
= 2
3 5]
] & © SO SRR
E 35 /f,»',/““"
2
s & o

’/‘ d-CholQR with d-SYRK

107 —&—d-CholQR wih d-GEMM

M d4-CholQR with dd-SYRK (Cray)
—— dd-CholQR with dd-GEMM (Cray)|

0 BOK 100K 150K 200K 20K 300K 30K 400K 4BOK 500K
Number of rows (n)

Number of rows

> only about 30% of d-CholQR in d-GEMM.

» dd-CholQR 8.5 ops, but 1.7x slower than d-CholQR
- dd-CholQR may be competitive with 2xd-CholQR
d- or dd-CholQR could fail if K(V) > e /2 or > 71

» CA-Krylov performance can be improved [VECPAR'14]
- reduced orthogonalization time, larger step size, or faster convergence

Mixed-precision CholQR/BMGS 11/16

Extension to orthogonalize many columns [ScalA’15]

v

Motivation: random sampling of large sparse matrix, n = 0(100)

v

CholQR performs 1;” flops on each numerical value read.

v

As n increases,
- it becomes more compute-bound

- mixed-precision CholQR becomes slower

v

Use mixed-precision CholQR in block MGS
- BMBS and then CholQR
same bound by using mCholQR+CholQR
with comp. overhead of %x
- restarted CA-Krlov
to orthogonalize s vectors at a time
to generate total of n basis vectors

Q, Q, Q, X, X
—

1. Orth X, against Q,; by BMGS

Mixed-precision CholQR/BMGS 12/16

Performance of BMGS: m = 100K on one GPU

400

%‘ChoIQ‘R

||-©-BMGS(20)
350 mBMGS(20)
—5—mCholQR
300} 1
250} 1
o
S 200+ 1
(0]
150} |
100 |
B = B = = ==
s AT TR E R ey
o e

20 40 60 80 100 120 140 160 180 200
Number of columns (n)

with n = 200,
» mCholQR was 7.1x slower than CholQR (with 8.5x ops)
» mB1.5MGS was 1.7x slower than CholQR (with 1.8x ops)
and was 4.1x faster than mCholQR

Mixed-precision CholQR/BMGS 13/16

Algorithmic variant with implicit Q;:
> each Q implicitly stored with Xj and R;j, i.e., @ := X;R ",
BCGS: X 1= X; — Xuj-1(G (X} X))
> stable if X; is well conditioned
— use implicit form for re-orthogonalization, i.e., Q; := Q,-ijjl

450

400

100 —&—BMGS(20)
- ©-implicit BMGS(20)
50 mB1.5MBGS(20)
implicit mB1.5MGS(20)
0 20 40 60 80 100 120 140 160 180 200
Number of columns (n)

ion CholQR/BMGS 14/16

Performance of BMGS: (m, n) = (500K, 200) on multiple GPUs

3500 T T
—©—CholQR

mBMGS
30001 —5—mCholQR 1

2500+ 1

2000 1

Gflop/s

1500~ 1
1000~ 1

500 1

"
0 L L

3 6
Number of GPUs

compared to CholQR,
» B1.5MGS communicates n; X more

» mCholQR has greater bottleneck with ddPOTRF

Mixed-precision CholQR/BMGS 15/16

Final Remarks

» Mixed-precision CholQR

> performs 8.5x more computation

reduces 2x more words, O(n?) with n < m
> was 1.4x slower when n = O(10)

> was 7.1x slower when n = O(100)

v

> smaller overhead if supported by hardware (e.g., single)

» BMGS combined with dd-CholQR + d-CholQR for TSQR

» performs &2 x more computation,

where n; is number of block columns
> was 1.7x slower when n = O(100)

» communicates n: X more often
Current Work
» Numerical studies and theoretical bounds

» CAQR [J. Demmel, L. Grigori, M. Hoemmen, J. Langou, 2012]
using “batched” QR

Mixed-precision CholQR/BMGS 16/16

Thank you!!

Mixed-precision CholQR/BMGS 17/16

