Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
	A Scalable Rando	mized Least Square	s Solver for Dense	
	Ov	erdetermined Syste	ms	

Chander lyer ¹ Haim Avron ² Georgios Kollias ³ Yves Ineichen ⁴ Christopher Carothers ¹ Petros Drineas ¹

¹Rensselaer Polytechnic Institute
 ²Tel Aviv University
 ³IBM Research - T. J. Watson Research Center
 ⁴IBM Research - Zurich Research Lab

Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems November 16, 2015

< □ > < 同 >

э

프 🖌 🔺 프 🕨 👘

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Outline				

- Introduction.
 - "Big Data" in real time.
 - Randomization : An HPC perspective.
- Dense least squares regression.
 - Least squares solvers : exact v/s randomized.
 - Blendenpik : A randomized iterative least squares solver.
- Implementing Blendenpik on the Blue Gene/Q.
 - Distributed Blendenpik for terabyte matrices.
 - Batchwise Blendenpik.
- Evaluation and Results.
 - Datasets.
 - Scalability analysis.
 - Performance analysis.
 - Numerical stability analysis.
- Summary and Future work.

Introduction

"Big Data" in real time (Arjun Shankar, SOS17 Conference)

Social Medium	Data generation rate
	400M / day
f	Images : $30B / month$
	Mails : 419B / day
	Videos : 76PB / year

Table : Social Media data generation rate

	Sensor	Data generation rate
🎢 F1 🏀 📷	lon mobility spectroscopy	10TB / day
🔊 . T	Boeing Flight recorder	240TB / trip
1 1 4	Astrophysics Data	10PB / year
	Square kilometer telescope array	480 PB / day

Table : Sensor data generation rate

(人間) トイヨト イヨト

Introduction Blendenpik BGQImplementation Evaluation Future Work
Randomization : An HPC perspective

Numerical Algorithms and Libraries at Exascale, Dongarra et. al., 2015, HPCwire

- "... one of the most interesting developments in HPC math libraries is taking place at the intersection of numerical linear algebra and data analytics, where a new class of randomized algorithms is emerging...".
- "... powerful tools for solving both least squares and low-rank approximation problems, which are ubiquitous in large-scale data analytics and scientific computing."
- "these algorithms are playing a major role in the processing of the information that has previously lain fallow, or even been discarded, because meaningful analysis of it was simply infeasible-this is the so called 'Dark Data phenomenon'."

Randomized Algorithms (random sampling / random projections)

- Can be scaled with relative ease(!) compared to traditional solvers to modern HPC architectures.
- Numerically robust due to implicit regularization (Caveat!).

-

イロト 不同 トイヨト イヨト

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Least squa	ares solvers			

Dense least squares Regression

 $y^* = \arg\min \|y\|_2$ subject to $y \in \arg\min \|Ax - b\|_2$ where

 $A \in \mathbb{R}^{m \times n}$; $\mathbf{nnz}(A) \approx m * n$; $m \gg n$; $x \in \mathbb{R}^n$.

Traditional non-iterative solvers and based on the classical QR algorithm that runs in $O(mn^2)$ and may be computationally expensive.

Randomized least squares solvers(Existing approaches)

• Sample rows after preprocessing *A*. Then apply QR on the sampled matrix. *Drineas, Mahoney, Muthukrishnan & Sarlós, Numer. Math., 2011*

 Construct a preconditioner from A. Then iteratively solve the preconditioned matrix. Rokhlin & Tygert, PNAS, 2008

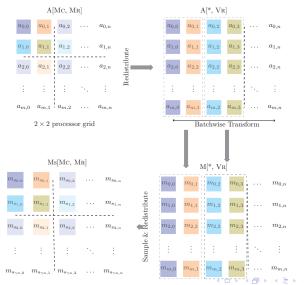
Blendenpik(Avron, Maymounkov & Toledo, SISC, 2010)

- Combines both approaches that runs in $O(mn \log m)$ time.
- Preprocess *A* by applying a unitary transform. Then sample rows from this transform and apply QR to construct a preconditioner. Then iteratively solve the preconditioned matrix to construct an approximate solution.

Introduction Blendenpik BGQImplementation Evaluation Future Work The *Blendenpik* algorithm **Input:** $A \in \mathbb{R}^{m \times n}$ matrix, $m \gg n$ and rank (A) = n. $b \in \mathbb{R}^m$ vector. $F \in \mathbb{R}^{m \times m}$ random unitary transform matrix. $\gamma(\geq 1)$ - Sampling factor. **Output:** $\hat{x} =$ Solution of min_x $||Ax - b||_2$. while Output not returned do M = FAm - raLet $S \in \mathbb{R}^{m \times m}$ be a random diagonal matrix: $S_{ii} = \begin{cases} 1 & \text{with probability } \frac{\gamma n}{m} \\ 0 & \text{with probability } 1 - \frac{\gamma n}{m} \end{cases}$ $M_c = SM$ Sampling $M_{\rm s} = Q_{\rm s} R_{\rm s}$ $\hat{\kappa} = \kappa_{\rm estimate} (R_{\rm s})$ Thin QR preconditioning if $\hat{\kappa}^{-1} > 5\epsilon_{\text{maching then}}$ $y = \min_{z} ||AR_{s}^{-1}z - b||_{2}$ Precondition Preconditioned iterative solve Solve $R_s \hat{x} = v$ return \hat{x} else if # iterations > 3 then solve using Baseline Least squares and return end if end if end while イロト 不同 トイヨト イヨト

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Distributed Ble	endenpik for	terascale matrices		

- Distributed Blendenpik is implemented on top of Elemental. Elemental partitions the input matrices into rectangular process grids in a 2D cyclic distribution.
- The unitary transformation is implemented using the 1-D routines of Discrete Cosine Transform(DCT) of the FFTW library.
- The 2D input distribution format is locally non-contiguous, while the 1-D unitary transform needs locally contiguous columns on the input matrix. This redistribution is done by an MPI_AlltoAll collective operation.

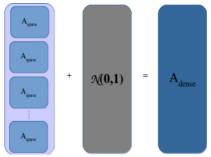

Challenges

- **Memory Constraints:** The number of elements in a column is limited by the RAM available to the process assigned to that column. Also, a process may share the buffer with several columns at once.
- **MPI Framework Constraints:** The number of elements that can be redistributed in a collective operation is limited upto INT_MAX(2³¹ 1).

イロト 不同 トイヨト イヨト

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Batchwise	Blendenpik			

Solution Batchwise redistribution and transformation.



3.1 3

Introducti	on	Blendenpik	BGQImplementation	Evaluation	Future Work
Data	asets				
	Data Set	Number of rows	Number of columns	Number of Non zeros	
	Yoshiyasu Mesh	234023	9393	853829	

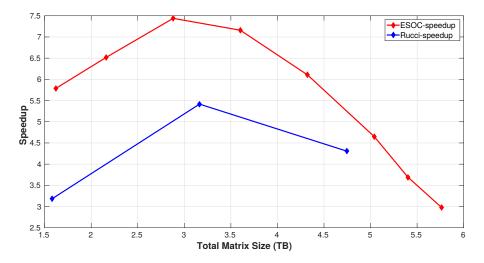
Data Set	Number of rows	Number of columns	Number of Non zeros
Yoshiyasu Mesh	234023	9393	853829
ESOC Springer	327062	37830	6019939
Rucci	1977885	109900	7791168

Table : Sparse base datasets used in data replication

Data Set	Maximum number of replicated rows (Million)	Total number of entries (Bil- lion)	Total size (TB)
Yoshiyasu Mesh	\sim 44.932	422.050	3.070
ESOC Springer	~ 20.931	791.856	5.761
Rucci	~ 5.933	652.108	4.744

Table : Maximum dataset sizes used in Blendenpik evaluation $\bullet \equiv \bullet$ э

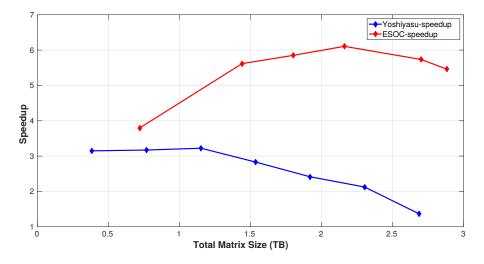
Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Evaluation metrics				
		$x \ b \in \mathbb{R}^m$ be the right b		


Let $A \in \mathbb{R}^{m \times n}$ be the input matrix, $b \in \mathbb{R}^m$ be the right hand side vector and let:

- $\hat{x} \longleftarrow$ the min-norm solution obtained from batchwise Blendenpik
- $x^* \longleftarrow$ the exact solution
 - $\hat{r} \longleftarrow$ the residual error, defined as $b A\hat{x}$.
- $\hat{t}_{run} \longleftarrow$ running time of Blendenpik.
- $t_{run}^{*} \leftarrow running time of baseline (Elemental).$

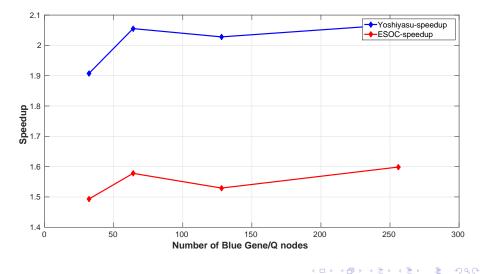
We evaluate the Blendenpik algorithm using the following metrics.

Speedup : given by $\frac{t_{\text{run}}^*}{\hat{t}_{\text{run}}}$. **Accuracy :** defined in terms of the relative error for the min-norm solution \hat{x} given by $\frac{\|A\hat{x} - Ax^*\|_2}{\|Ax^*\|_2}$ and the backward error given by $\|A^T\hat{r}\|_2$.

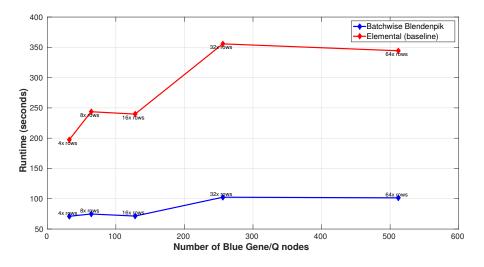

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Speedup analysis f	or ESOC Springer ar	nd Rucci dense matrices for	1024 BG/Q nodes.	

э

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □


Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Speedup analysis f	or Yoshiyasu Mesh a	nd ESOC Springer dense n	natrices for 512 BG/0	Q nodes.

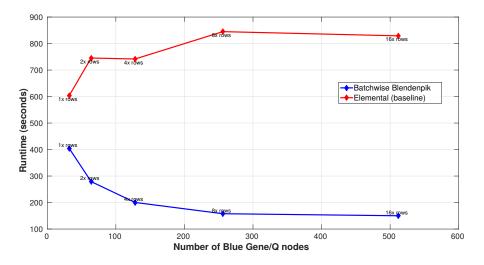
э


イロト イポト イヨト イヨト

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
0 0		r the Yoshiyasu Mesh matr for increasing Blue Gene/0		nd ESOC

-

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Weak scaling	runtime analysis for	the Yoshiyasu Mesh matri>	imes (234023 $ imes$ 9393) for	r increasing
matrix sizes a	nd increasing Blue G	ene/Q nodes.		

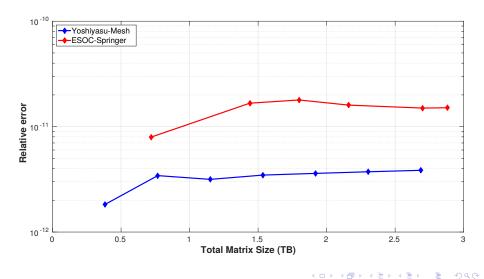


< □ > < 同 >

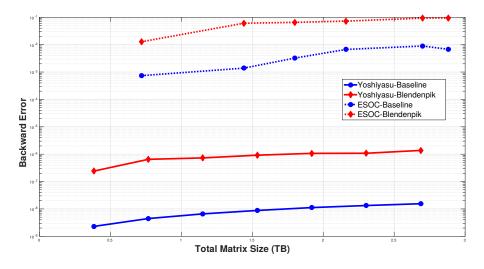
э

< ∃⇒

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Weak scaling	speedup analysis for	the ESOC Springer matrix	(327062×37830) for	or increasing
matrix sizes a	nd increasing Blue G	ene/Q nodes.		


< □ > < 同 >

э


< ∃⇒

∃ >

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Accuracy ana	lysis in terms of relat	ive error as a function of i	ncreasing matrix size	for Yoshiyasu
Mesh and ES	OC Springer matrices	for 512 BG/Q nodes.		

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
	alysis in terms of backv SOC Springer matrices	ward error as a function of for 512 BG/Q nodes.	f increasing matrix siz	e for Yoshiyasu

æ

< ロ > < 同 > < 回 > < 回 >

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work
Summary a	and Future Work			

Summary

- The scalability of batchwise Blendenpik is determined by the number of columns in each batch of the DCT transform which in turn is determined by the number of rows of the matrix.
- The batchwise Blendenpik solver demonstrates appreciable strong scaling and weak scaling comparable to the baseline Elemental solver.
- The solver demonstrates excellent numerical stability in terms of the relative error. The backward error however is worse, though this is comparable to the backward error achieved by the baseline Elemental solver.

Future Work

- Perform unitary transformation only after an initial reduction of row space using input-sparsity sketching, as suggested by Clarkson and Woodruff(*STOC*,2013). This also helps us to choose a larger sample size for the preconditioning stage that can lead to a significant improvement in the numerical stability.
- Design a more finely tuned Blendenpik-based algorithm by reducing the communication overhead involved.

Introduction	Blendenpik	BGQImplementation	Evaluation	Future Work

Thank you !!!

æ

・ロト ・ 日 ト ・ 日 ト ・ 日 ト