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“Big Data” in real time (Arjun Shankar, SOS17 Conference)

Social Medium Data generation rate

400M / day

Images : 30B / month

Mails : 419B / day

Videos : 76PB / year

Table : Social Media data generation rate

Sensor Data generation rate

Ion mobility spectroscopy 10TB / day
Boeing Flight recorder 240TB / trip
Astrophysics Data 10PB / year
Square kilometer telescope array 480 PB / day

Table : Sensor data generation rate
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Randomization : An HPC perspective

Numerical Algorithms and Libraries at Exascale, Dongarra et. al.,2015,HPCwire

“. . . one of the most interesting developments in HPC math libraries is
taking place at the intersection of numerical linear algebra and data
analytics, where a new class of randomized algorithms is emerging. . . ”.

“. . . powerful tools for solving both least squares and low-rank
approximation problems, which are ubiquitous in large-scale data analytics
and scientific computing.”

“these algorithms are playing a major role in the processing of the
information that has previously lain fallow, or even been discarded,
because meaningful analysis of it was simply infeasible-this is the so called
’Dark Data phenomenon’.”

Randomized Algorithms (random sampling / random projections)

Can be scaled with relative ease(!) compared to traditional solvers to
modern HPC architectures.

Numerically robust due to implicit regularization (Caveat!).

A Scalable Randomized Least Squares Solver for Dense Overdetermined Systems 4/19



Introduction Blendenpik BGQImplementation Evaluation Future Work

Least squares solvers

Dense least squares Regression

y
∗ = argmin‖y‖2 subject to y ∈ argmin

x
‖Ax − b‖2 where

A ∈ R
m×n; nnz(A) ≈ m ∗ n; m≫ n; x ∈ R

n
.

Traditional non-iterative solvers and based on the classical QR algorithm that
runs in O(mn2) and may be computationally expensive.

Randomized least squares solvers(Existing approaches)

Sample rows after preprocessing A. Then apply QR on the sampled matrix.
Drineas, Mahoney, Muthukrishnan & Sarlós, Numer. Math., 2011

Construct a preconditioner from A. Then iteratively solve the
preconditioned matrix.
Rokhlin & Tygert, PNAS, 2008

Blendenpik(Avron, Maymounkov & Toledo, SISC, 2010)

Combines both approaches that runs in O(mn logm) time.

Preprocess A by applying a unitary transform. Then sample rows from this
transform and apply QR to construct a preconditioner. Then iteratively
solve the preconditioned matrix to construct an approximate solution.
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The Blendenpik algorithm

Input: A ∈ R
m×n matrix, m ≫ n and rank (A) = n.

b ∈ R
m vector.

F ∈ R
m×m random unitary transform matrix.

γ(≥ 1) - Sampling factor.
Output: x̂ = Solution of minx‖Ax − b‖2.
while Output not returned do

M = FA
Let S ∈ R

m×m be a random diagonal matrix:

Sii =

{

1 with probability γn
m

0 with probability 1 − γn
m

Ms = SM

Ms = QsRs

κ̂ = κestimate(Rs )

if κ̂
−1

> 5ǫmachine then
y = minz‖AR

−1
s z − b‖2

Solve Rs x̂ = y
return x̂

else
if # iterations > 3 then

solve using Baseline Least squares and return
end if

end if
end while

random unitary transformation

Sampling

Thin QR preconditioning

Preconditioned iterative solve
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Distributed Blendenpik for terascale matrices

Distributed Blendenpik is implemented on top of Elemental. Elemental
partitions the input matrices into rectangular process grids in a 2D cyclic
distribution.

The unitary transformation is implemented using the 1-D routines of
Discrete Cosine Transform(DCT) of the FFTW library.

The 2D input distribution format is locally non-contiguous, while the 1-D
unitary transform needs locally contiguous columns on the input matrix.
This redistribution is done by an MPI AlltoAll collective operation.

Challenges

Memory Constraints: The number of elements in a column is limited by
the RAM available to the process assigned to that column. Also, a process
may share the buffer with several columns at once.

MPI Framework Constraints: The number of elements that can be
redistributed in a collective operation is limited upto INT MAX(231 − 1).
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Batchwise Blendenpik

Solution Batchwise redistribution and transformation.
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Datasets

Data Set Number of rows Number of columns Number of Non zeros

Yoshiyasu Mesh 234023 9393 853829
ESOC Springer 327062 37830 6019939
Rucci 1977885 109900 7791168

Table : Sparse base datasets used in data replication

Data Set Maximum number of replicated
rows (Million)

Total number of entries (Bil-
lion)

Total size (TB)

Yoshiyasu Mesh ∼ 44.932 422.050 3.070
ESOC Springer ∼ 20.931 791.856 5.761
Rucci ∼ 5.933 652.108 4.744

Table : Maximum dataset sizes used in Blendenpik evaluation
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Evaluation metrics

Let A ∈ R
m×n be the input matrix, b ∈ R

m be the right hand side vector and
let:

x̂ ←− the min-norm solution obtained from batchwise Blendenpik

x
∗ ←− the exact solution

r̂ ←− the residual error, defined as b − Ax̂ .

t̂run ←− running time of Blendenpik.

t
∗

run ←− running time of baseline (Elemental).

We evaluate the Blendenpik algorithm using the following metrics.

Speedup : given by
t∗run

t̂run
.

Accuracy : defined in terms of the relative error for the min-norm solution

x̂ given by
‖Ax̂ − Ax∗‖2
‖Ax∗‖2

and the backward error given by

‖AT r̂‖2.
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Speedup analysis for ESOC Springer and Rucci dense matrices for 1024 BG/Q nodes.

Total Matrix Size (TB)
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Speedup analysis for Yoshiyasu Mesh and ESOC Springer dense matrices for 512 BG/Q nodes.

Total Matrix Size (TB)
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Strong scaling speedup analysis for the Yoshiyasu Mesh matrix (234023 × 9393) and ESOC

Springer matrix (327062 × 37830) for increasing Blue Gene/Q nodes.
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Weak scaling runtime analysis for the Yoshiyasu Mesh matrix (234023 × 9393) for increasing

matrix sizes and increasing Blue Gene/Q nodes.
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Weak scaling speedup analysis for the ESOC Springer matrix (327062 × 37830) for increasing

matrix sizes and increasing Blue Gene/Q nodes.
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Accuracy analysis in terms of relative error as a function of increasing matrix size for Yoshiyasu

Mesh and ESOC Springer matrices for 512 BG/Q nodes.
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Accuracy analysis in terms of backward error as a function of increasing matrix size for Yoshiyasu

Mesh and ESOC Springer matrices for 512 BG/Q nodes.
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Summary and Future Work

Summary

The scalability of batchwise Blendenpik is determined by the number of
columns in each batch of the DCT transform which in turn is determined
by the number of rows of the matrix.

The batchwise Blendenpik solver demonstrates appreciable strong scaling
and weak scaling comparable to the baseline Elemental solver.

The solver demonstrates excellent numerical stability in terms of the
relative error. The backward error however is worse, though this is
comparable to the backward error achieved by the baseline Elemental
solver.

Future Work

Perform unitary transformation only after an initial reduction of row space
using input-sparsity sketching, as suggested by Clarkson and
Woodruff(STOC,2013). This also helps us to choose a larger sample size
for the preconditioning stage that can lead to a significant improvement in
the numerical stability.

Design a more finely tuned Blendenpik-based algorithm by reducing the
communication overhead involved.
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Thank you !!!
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