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Facing the Four Algorithmic Frontiers of Exascale 



“A good player plays where the puck is, while a great 
player skates to where the puck is going to be.” –  

– Wayne Gretzsky 
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Aspiration for this brief talk 
To paraphrase Gretzsky: 

  “Algorithms for where architectures are going to be” 

Such algorithms may or may not be the best today; 
however, hardware trends can be extrapolated to 
their sweet spots – as the traditional objective of 

conserving flops is replaced with the new objective 
of reducing communication and synchronization – 

for a new computational complexity calculus.  
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Reflections on algorithmic tuning from 
this morning’s talks – a brave new world! 
●  Classic trade-offs (pre-exascale/SPMD Bulk Synchronous) 

§  recompute on-the-fly for less storage/traffic 
§  more expensive inner iterations for fewer outer iterations 
§  redundant computation for less communication 
§  less stability for less frequent global reductions 

●  New trade-offs (energy-austere/emerging architectures) 
§  algorithmic responsibility for resilience for less power/energy 
§  redundant solves for shorter executions 
§  over-decomposition for less synchrony 
§  less determinism for less synchrony 
§  more flops per iteration for fewer iterations 
§  more flops for more concurrency 
§  more precision for fewer iterative corrections 
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Some exascale trends: 
the four architectural frontiers 

●  Clock rates cease to increase while arithmetic 
capability continues to increase dramatically w/
concurrency consistent with Moore’s Law 

●  Memory storage capacity diverges exponentially below 
arithmetic capacity 

●  Transmission capability (memory BW and network 
BW) diverges exponentially below arithmetic capability 

●  Mean time between hardware interrupts shortens 
  ! Billions of $ € £ ¥ of scientific software worldwide 
hangs in the balance until better algorithms arrive to span 
the architecture-applications gap 
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Why exa- is different 

(Intel Sandy Bridge, 2.27B transistors) 

  after DARPA report of P. Kogge (ND) et al. and T. Schulthess (ETH) 

Going across the die will require an order of magnitude more! 
DARPA study predicts that by 2019: 
u  Double precision FMADD flop: 11pJ 
u  cross-die per word access (1.2pJ/mm): 24pJ (= 96pJ overall) 

Which steps of FMADD take more energy?  

input 
input 

input 

output 

four 
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Today’s power costs per operation 

   c/o J. Shalf (LBNL) 

Remember that a pico (10-12) of something done exa (1018) 
times per second is mega (106)-somethings per second 
u  100 pJ at 1 Eflop/s is 100 MW (for the flop/s only!) 
u  1 MW-year costs about $1M ($0.12/KW-hr × 8760 hr/yr) 

•  We “use” 1.4 KW continuously, so 100MW is 71,000 people 

Operation approximate energy cost 
DP FMADD flop 100 pJ 
DP DRAM read-to-register 4800 pJ 
DP word transmit-to-neighbor 7500 pJ 
DP word transmit-across-system 9000 pJ 
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Why exa- is different 

Moore’s Law (1965) does not end but 
Dennard’s MOSFET scaling (1972) does 

Eventually processing is 
limited by transmission, 
as known for > 4 decades 

Robert Dennard, IBM 
(inventor of DRAM, 1966) 

ScalA15 | 16 Nov 2015 



Simulation enabled by price and capability 

	
  
	
  

Year	
  

Cost	
  per	
  
delivered	
  
Gigaflop/s	
  

1989	
   $2,500,000	
  	
  	
  	
  	
  	
  	
  	
  
1999	
   $6,900	
  
2009	
   $8	
  

	
  
	
  

Year	
  

Gigaflop/s	
  
delivered	
  to	
  
applica4ons	
  

1988	
   1	
  
1998	
   1,020	
  
2008	
   1,350,000	
  

By the Gordon Bell Prize, awarded since 1988, simulation cost 
per performance has improved by nearly a million times in 
two decades. Performance on real applications (e.g., 
mechanics, materials, petroleum reservoirs, gravitation) has 
improved more than a million times. 

Gordon Bell 
Prize: Peak 

Performance 

Gordon Bell 
Prize: Price 

Performance 

Scientists and engineers plan along these trends … 
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… likewise, President Obama 
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Optimal hierarchical algorithms 
n  Asymptotically in scale, one should restrict attention to 

algorithms with optimal scaling in memory requirements and 
flops,  O( kr N logp N ) 

n   p is typically 0 , 1 , or at worst 2 
n   k represents a local rank or polynomial expansion parameter 
n  Some optimal hierarchical algorithms 

◆  Fast Fourier Transform (1960’s) 
◆  Multigrid (1970’s) 
◆  Fast Multipole (1980’s) 
◆  Sparse Grids (1990’s) 
◆  H matrices (2000’s) 
 “With great computational power comes great algorithmic 

responsibility.” – Longfei Gao, KAUST PhD, 2013 
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Shared memory strong scaling is the game 
n  Expanding the number of nodes (processor-memory units)  

beyond 106 is not a serious threat for 
◆  optimal algorithms  
◆  with amortizable precise load balancing on performance-

reliable nodes  
◆  connected with a log-diameter or high-radix switch network 

n  Challenge is usefully expanding the number of cores on a 
node to 103 

◆  must be done while memory and memory bandwidth per node 
expand by (at best) ten-fold less (basically “strong” scaling) 

◆  don’t need to wait for full exascale systems to experiment in this 
regime – the battle is fought on individual shared-memory 
nodes 
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Main challenge at exascale 
n Almost all “good” algorithms in linear algebra, 

differential equations, integral equations, signal 
analysis, etc., require frequent synchronizing 
global communication 
◆  inner products, norms, (global) transposes, and fresh (global) 

residuals are “addictive” idioms 
◆  can make algorithms fragile even for smaller concurrency, 

due to algorithmic load imbalance, hardware performance 
variation, etc. 

n Concurrency is heading into the billions of cores 
◆  Temporarily leveled off at 3 million, but has to rise with 

bounded clock speeds 
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Bulk synchronous 
generation 

Energy-aware 
generation 
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The four algorithmic frontiers 
n  Must adapt or substitute for favorite methods with new 

methods that have  
◆  reduced synchrony (in frequency and/or span) 
◆  greater arithmetic intensity  
◆  greater SIMD/SIMT-style shared-memory concurrency 
◆  built-in resilience (“algorithm-based fault tolerance” or 

ABFT) to arithmetic/memory faults or lost/delayed 
messages 

n  Programming models and runtimes may have to be 
stretched to accommodate 

n  Everything should be on the table for trades, beyond 
disciplinary thresholds ! co-design 
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Mind the gap 

◆  full employment program for computational 
scientists and engineers 

◆  Like the new post-doc programs at Lawrence 
Berkeley and Oak Ridge National Labs 

n Algorithms must adapt to span the gap between 
aggressive applications and austere architectures 
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Required software 
      Model-related 

◆  Geometric modelers 
◆  Meshers 
◆  Discretizers 
◆  Partitioners 
◆  Solvers / integrators 
◆  Adaptivity systems 
◆  Random no. generators 
◆  Subgridscale physics  
◆  Uncertainty 

quantification 
◆  Dynamic load balancing 
◆  Graphs and 

combinatorial algs. 
◆  Compression  
 

        Development-related        
u  Configuration systems 
u  Source-to-source 

translators 
u  Compilers 
u  Simulators 
u  Messaging systems 
u  Debuggers 
u  Profilers 
 

      Production-related 
u  Dynamic resource 

management 
u  Dynamic performance 

optimization 
u  Authenticators 
u  I/O systems 
u  Visualization systems 
u  Workflow controllers 
u  Frameworks 
u  Data miners 
u  Fault monitoring, 

reporting, and recovery 

High-end computers come 
with little of this stuff. 

Most has to be contributed 
by the user  community 
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•  Poisson-like elliptic problems 
◆  Highest order operators in many PDE-based models 

■  fluids, solids, E&M, radiation, DFT, MD, etc. 
•  Linear algebra on dense symmetric/Hermitian matrices 

◆  Generalized eigenproblems in chemistry/materials 
■  coming from various simplified models of Schroedinger in 

chemistry 
◆  Covariance matrices 

■  coming from problems in spatial statistics 
◆  Schur complement matrices 

■  coming from dimension reduction in PDEs 
◆  Reduced Hessian matrices  

■  coming from problems in PDE-constrained optimization 

Dominant cycle burners 
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Hierarchical algorithms (esp. for PDEs) 
n  Fast Fourier Transform 

◆  fragile (const. coeff.), but can be preconditioner for variable coeff. 
◆  distributed multi-D version requires complete in-place exchange 

n  Multigrid 
◆  sometimes hard to make robust for: anisotropy, inhomogeneity, 

indefiniteness, skew-symmetry, multiple components 
◆  adaptive algebraic versions find coarse spaces automatically 
◆  coarse space basis vectors can be O(N) 
◆  algebraic versions suffer from coarse grid stencil bloat 
◆  can relax robustness requirements, use effectively as preconditioner  
◆  frequent synchronization between levels 
◆  main application vulnerability: Helmholtz-like indefiniteness 
◆  exascale features: poor arithmetic intensity, but good algoirthmic-

based fault tolerance, new mult-add version less synchronous 
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Hierarchical algorithms (esp. for PDEs) 
n  Fast Multipole 

◆  fragile (needs Green’s function), but interesting as a preconditioner 
◆  as a high-k solver typically loses to multigrid in BSP settings 
◆  exascale features: good SIMT structure with high arithmetic intensity 

at leaves, concurrency across levels, not too synchronous 

n  Sparse Grids 
◆  complicated data structure; but “combination” technique recovers 

some exploitable SIMT-like uniformity 

n  H matrices 
◆  perhaps the least mathematically fragile optimal solver 
◆  highly tunable by rank/admissibility to problem and to architecture 
◆  somewhat complicated data structures 
◆  exascale features: good SIMT structure with high arithmetic intensity 

at leaves 
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Sparse grids for high-D spatial data 

O(nd )→O(n ⋅ (logn)d−1)
Storage complexity 
 
(spatial dimension d) 

O(n− p )→O(n− p ⋅ (logn)k )
Representation accuracy 
 
(order p; k depends on p, d) 

c/o J. Gaercke et al. (TU Bonn) 
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Combination of simple coarse spaces 

c/o J. Gaercke et al. (U Bonn) 
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Hierarchically low rank (H ) matrices 
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General tool: hierarchical matrices 
•   [Hackbusch, 1999] : off-diagonal blocks of typical 

differential and integral operators have low effective rank 
–  smoothness more critical than decay rate 

•  By exploiting low rank, k , memory requirements and 
operation counts approach optimal in matrix dimension n 
–  polynomial in k 
–  lin-log in n  
–  constants carry the day in comparisons with multigrid 

•  Such hierarchical representations navigate a compromise 
–  fewer blocks of larger rank (“weak admissibility”) or  
– more blocks of smaller rank (“strong admissibility”) 
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weak	
  admissibility	
  strong	
  admissibility	
  

a<er	
  Hackbusch	
  et	
  al.,	
  2003	
  	
  

higher	
  
rank	
  

lower	
  
rank	
  

Tuning: ‘strong’ and ‘weak’ admissibility 
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more	
  general	
  system	
  

Graphical idiom for hierarchical structure 
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•   [Hackbusch, 1999] : H-matrices 
•   [Hackbusch & Khoromskij, 2000] : H2-matrices 
•   [Li et al., 2009] : hierarchically semi-separable matrices 

(HSS) 
•   [Ho, et al., 2012] : recursive skeletonization 
•   [Darve et al., 2013] : hierarchical off-diagonal low-rank 

matrices (HODLR) 
•   [Yokota et al., 2014] : algebraic fast multipole 
•  … 

Hierarchical matrix flavors 
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•  When dense blocks arise in “routine” matrix operations, 
replace them with hierarchical representations 

•  Use high accuracy (high rank, but typically much less 
than full) to build “exact” solvers 

•  Use low accuracy (low rank) to build preconditioners 
 •  [Kriemann, et al.] : Hlib 

•  [Li, et al.] : STRUMPACK 
•  [Darve, et al.] : HODLR 
•  [Poulson, et al.] : DMHM 
•  [Amestoy, et al.] : MUMPS 
•  [Ltaief, et al.] : HBLAS 
 

Inversion Complexity 

Applications in linear algebra 
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Hierarchical structure 
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H2 hierarchical structure 
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Recursive construction of nested bases  

Data structure components: 
•  dense blocks from original 

matrix  
•  diagonal blocks of low-rank 

matrices 
•  column bases and row bases 

for low-rank matrices 
•  maps between bases of 

different scales 
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Two-stage compression procedure 
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Accuracy vs. rank 

exponential decay kernel in H2 form 
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•  Beginning of the “KBLAS” 
•  Beginning of the “HBLAS” 
•  Beginning of an H-based direct solver for 

Helmholtz 

To illustrate: stories of work in progress 
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KBLAS: GPU implementations of  
dense linear algebra 

•  Increase SIMT-style thread concurrency 
u  overcome memory bandwidth limitations of the 

BLAS2 matrix-vector multiply,  y = α A x + β y 
u  coalesced memory accesses 
u  double buffering 
u  polyalgorithmic approach based on block size 
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Single GPU and multi-GPU versions 
NVIDIA has adopted for CuBLAS 6.0 

c/o A. Abdelfattah (Oak Ridge National Lab/UT) 

Optimized GEMV/SYMV kernels 
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“KBLAS inside” 
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HBLAS: GPU implementations of  
hierarchical linear algebra 

•  Build on KBLAS to implement BLAS with 
hierarchically low rank matrix data structures on 
GPUs 
u  matrix-vector multiply,  y = A x 
u  tree-based scheme, following fast multipole 

c/o W. Boukaram (KAUST/NVIDIA) 
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Upsweep/downsweep phases 
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Comparison with HlibPro 
•  Problem: 1D integral equation (fully dense) 
•  Hardware 

u  20-core Intel Xeon (2.8 GHz) 
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Preliminary GPU version 
•  Problem: 1D integral equation (fully dense) 
•  Hardware 

u  Tesla K40m NVIDIA GPU 
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Accelerated Cyclic Reduction 

•  Build on HBLAS to convert cyclic reduction to an 
optimal complexity solver for non-constant 
coefficient operators 
u  implement on multicore to compare against the 

full-featured HlibPro library of R. Kriemann 
until HBLAS is ready  

u  compare with multigrid 

c/o G. Chavez (KAUST) 
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Cyclic reduction complementary to 
nested dissection  

1D mesh 
 
 
First step of nested dissection 
 
 
 
First step of cyclic reduction 
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Preservation of tridiagonal structure 
on Schur complementation  
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Preservation of tridiagonal structure 
on permuted Schur complementation  
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Block structure in 2D  

Issue: diagonal block inversion is non-optimal when FFT 
does not apply 
Enter hierarchical matrix arithmetic — how will rank 
grow? 



ScalA15 | 16 Nov 2015 

Block recursive application  
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Pseudocode 
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Numerical experiments 
Second-order finite difference discretization with 
homogeneous BCs on the unit square 
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Numerical experiments 
2D experiments comparing ACR with H-LU and AMG 
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Hardware architecture 
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Smoothly varying diffusivity 
12 cores of Westmere  
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Helmholtz: decreasing h, fixed k 
12 cores of Westmere  
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Helmholtz: fixed h, increasing k 
12 cores of Westmere  

ACR 

H-LU 4x memory half the time 
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Helmholtz: fixed kh 
12 cores of Westmere  

ACR 

H-LU 2x memory same time 
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Near linear complexity in problem size  
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Radically truncated-rank ACR as 
preconditioner for 3D Poisson 

ACR with weak 
admissibility 

can beat 
multigrid as a 
preconditioner 

on Poisson 
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Comments  
•  ACR is not in competition with other hierarchical matrix 

libraries; it is a customer 
–  algorithmic outer wrapper  
– may unlock additional exploitable structure for concurrency and 

reuse 

•  Internal H arithmetic engine is modular 
–  here, HLibPro® 

–  ride emerging software for each emerging hardware environment 
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under development in the 
ECRC at KAUST 

available in global standard 
open-source software 

Hierarchical Computations on Manycore Architectures  
(HiCMA – Arabic for “wisdom”) 
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KAUST’s Extreme Computing Research Center 

Embracing	
  the	
  
opportuni1es	
  
of	
  exascale	
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PhD thesis topics in the ECRC all attempt to impact scaling of 
important algorithmic infrastructure to the exascale  

Mapping algorithms to architecture challenges 
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Students and scientists in the ECRC are motivated by at least 
one “grand challenge” application requiring scaling 

Mapping algorithms to application challenges 
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MWD multicore wavefront diamond-tiling stencil algorithm  

                reduces memory bandwidth pressure in shared-cache multicore 
                 processors 

BDDC parallel preconditioner for high-contrast elliptic PDEs 
  reduces synchronization by doing lots of local flops  

MSPIN nonlinear preconditioner for Newton methods 
  replaces most global synchronizations with local problems 

FMM(ε) preconditioner for elliptic problems  
  has good asymptotic complexity but a high constant; we  
  use in low accuracy (low constant) as a preconditioner 

QDWH-SVD singular value decomposition 
  generates arbitrary amounts of dynamically schedulable concurrency 
  (already beats state-of-the-art on GPUs even though it 

                                requires many more flops) 
Mult-Add MG multigrid algorithm 

  creates additional concurrency without the usual convergence 
  penalty of additive MG through elaborate inter-grid transfers 

                                 

ECRC: skating to where the puck will be 
Girih 

PETSc 

PETSc 

HiCMA 

HiCMA 

Hypre 
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Bad news/good news (1) 
●  One will have to explicitly control more of 

the data motion 
●  carries the highest energy cost in the exascale 

computational environment 

●  One finally will get the privilege of 
controlling the vertical data motion 
●  horizontal data motion under control of users already  
●  but vertical replication into caches and registers was 

(until recently with GPUs) mainly scheduled and laid 
out by hardware and runtime systems, mostly invisibly 
to users 
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●  “Optimal” formulations and algorithms may lead 
to poorly proportioned computations for exascale 
hardware resource balances 
●  today’s “optimal” methods presume flops are 

expensive and memory and memory bandwidth are 
cheap 

●  Architecture may lure scientific and engineering 
users into more arithmetically intensive 
formulations than (mainly) PDEs 
●  tomorrow’s optimal methods will (by definition) evolve 

to conserve whatever is expensive 

Bad news/good news (2) 
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●  Fully hardware-reliable executions may be regarded as 
too costly/synchronization-vulnerable 

●  Algorithmic-based fault tolerance (ABFT) will be 
cheaper than hardware and OS-mediated reliability 
●  developers will partition their data and their program units into 

two sets 
●  a small set that must be done reliably (with today’s standards for 

memory checking and IEEE ECC) 
●  a large set that can be done fast and unreliably, knowing the errors 

can be either detected, or their effects rigorously bounded 

●  Examples already in direct and iterative linear algebra  
●  Anticipated by Von Neumann, 1956 (“Synthesis of reliable 

organisms from unreliable components”) 

Bad news/good news (3) 
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●  Default use of (uniform) high precision in nodal bases on 
dense grids may decrease, to save storage and bandwidth 
●  representation of a smooth function in a hierarchical basis or on 

sparse grids requires fewer bits than storing its nodal values, for 
equivalent accuracy 

●  we will have to compute and communicate “deltas” between states 
rather than the full state quantities, as when double precision was 
once expensive (e.g., iterative correction in linear algebra) 

●  a generalized “combining network” node or a smart memory 
controller may remember the last address, but also the last values, 
and forward just the deltas 

●  Equidistributing errors properly to minimize resource use 
will lead to innovative error analyses in numerical analysis 

Bad news/good news (4) 
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●  Fully deterministic algorithms may be regarded as 
too synchronization-vulnerable 
●  rather than wait for missing data, we may predict it using various 

means and continue 
●  we do this with increasing success in problems without models 

(“big data”) 
●  should be fruitful in problems coming from continuous models 
●  “apply machine learning to the simulation machine”  

●  A rich numerical analysis of algorithms that make 
use of statistically inferred “missing” quantities may 
emerge 
●  future sensitivity to poor predictions can often be estimated 
●  numerical analysts will use statistics, signal processing, ML, etc. 

 

Bad news/good news (5) 
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•  Accelerate delivery of an exascale computing system that integrates hardware 
and software capability to deliver approximately 100 times the performance of 
current systems across a range of applications  

•  Increase coherence between the technology base used for modeling and 
simulation and that used for data analytic computing 

•  Establish a path forward for HPC systems after the limits of current 
semiconductor technology are reached (the “post-Moore’s Law era”) 

•  Increase the capacity and capability of a national HPC ecosystem by 
employing a holistic approach including networking technology, 
foundational algorithms and software, and workforce development 

•  Develop a public-private collaboration to ensure that the benefits of the R&D 
advances are shared  between government, industrial, and academic sectors 

      “Not since the signing of legislation in 1991 for the HPCC initiative has the nation articulated as bold and 

specific a goal for the advancement of HPC and the benefits to be derived.” 

                                                                                            − Thomas Sterling and William Gropp, on NCSI in HPCWire 

* Slightly condensed for for slide display 

National Strategic Computing Initiative (NSCI)* 



david.keyes@kaust.edu.sa 

Architectures	
   ApplicaCons	
  

Exascale algorithms “mind the gap” 
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Thank you 

 ششككرراا   

david.keyes@kaust.edu.sa 


