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Facing the Four Algorithmic Frontiers of Exascale

David Keyes, Applied Mathematics & Computational Science
Director, Extreme Computing Research Center (ECRC)

King Abdullah University of Science and Technology



“A good player plays where the puck is, while a great

player skates to whey . puck' is going to be.”

— Wayne Gretzsky




To paraphrase Gretzsky:

“Algorithms for where architectures are going to be”

Such algorithms may or may not be the best today;
however, hardware trends can be extrapolated to
their sweet spots — as the traditional objective of

conserving flops is replaced with the new objective

of reducing communication and synchronization —

for a new computational complexity calculus.
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Reflections on algorithmic tuning from

this morning’s talks — a brave new world!
® C(lassic trade-offs (pre-exascale/SPMD Bulk Synchronous)

recompute on-the-fly for less storage/traffic
more expensive inner iterations for fewer outer iterations
redundant computation for less communication

less stability for less frequent global reductions

® New trade-offs (energy-austere/emerging architectures)

algorithmic responsibility for resilience for less power/energy
redundant solves for shorter executions

over-decomposition for less synchrony

less determinism for less synchrony

more flops per iteration for fewer iterations

more flops for more concurrency

more precision for fewer iterative corrections
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Some exascale trends:
the four architectural frontiers

® Clock rates cease to increase while arithmetic
capability continues to increase dramatically w/
concurrency consistent with Moore’s Law

® Memory storage capacity diverges exponentially below
arithmetic capacity

® Transmission capability (memory BW and network
BW) diverges exponentially below arithmetic capability

® Mean time between hardware interrupts shortens

=» Billions of $ € £ ¥ of scientific software worldwide
hangs in the balance until better algorithms arrive to span
the architecture-applications gap
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Authority for architectural roadmap:
www.exascale.org/iesp

EXASCALE ROADMAP1.0

SOFTWARE PROJECT

The International Exascale
Software Roadmap,

J. Dongarra, P. Beckman, et al.,

International Journal of High
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Why exa- is different

Which steps of FMADD take more energy?

64-bit floating-point fused multiply add or moving four 64-bit operands 20 mm across the die

934,569.299814557 input
X 52.827419489135/904 input
= 49,370,884.442971624253823

+ 4.20349729193958 input

= 49,370,888.64646892 output

20 mm

(Intel Sandy Bridge, 2.27B transistors)
Going across the die will require an order of magnitude more!

DARPA study predicts that by 2019:
¢ Double precision FMADD flop: 11pJ
¢ cross-die per word access (1.2pJ/mm): 24pJ (= 96pJ overall)

after DARPA report of P. Kogge (ND) et al. and T. Schulthess (ETH) ScalA15 |16 Nov 2015



Today’s power costs per operation

DP FMADD flop 100 pJ
DP DRAM read-to-register 4800 pJ
DP word transmit-to-neighbor 7500 pJ
DP word transmit-across-system 9000 pJ

Remember that a pico (10-'%) of something done exa (103)
times per second is mega (10%)-somethings per second
¢ 100 pJ at 1 Eflop/s is 100 MW (for the flop/s only!)
¢ 1 MW-year costs about $1M ($0.12/KW-hr x 8760 hr/yr)
* We “use” 1.4 KW continuously, so 100MW is 71,000 people

c/o J. Shalf (LBNL) ScalA15 | 16 Nov 2015




Why exa- is different

Moore’s Law (1965) does not end but
Dennard’s MOSFET scaling (1972) does

Table 1
Scaling Results for Circuit Performance

Device or Circuit Parameter Scaling Factor
Device dimension ., L, W 1/«
Doping conecentration N, X
Voltage V 1/x
Current, / 1/«
Capacitance €4/t 1/x
Delay time/circuit VC/I
Power dissipation/circuit VI
Power density VI/A X
Table 2 Robert Dennard, IBM
Scaling Results for Interconnection Lines ( inventor of DRAM’ 1966)
Parameter Scaling Faector Eventu ally processing is
Line resistance, Iy, = pL/Wt K .. . .
Normalized voltage drop IR./V limited by transmission,
Line response time R,C
Line current density I/4 @ as known for > 4 decades
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Simulation enabled by price and capability

By the Gordon Bell Prize, awarded since 1988, simulation cost
per performance has improved by nearly a million times in
two decades. Performance on real applications (e.g.,
mechanics, materials, petroleum reservoirs, gravitation) has
improved more than a million times.

Gordon Bell
Pl?i;e(:)rll’ri:e COSt per

Performance delivered
Year Gigaflop/s

1989 $2,500,000
1999 $6,900
2009 S8

Gordon Bell

Prize: Peak Gigaﬂop/s

Performance

delivered to
Year applications
1988 1
1998 1,020

2008 1,350,000

Scientists and engineers plan along these trends ...



... likewise, President Obama

THE WHITE HOUSE

Office of the Press Secretary

For Immediate Release July 29, 2015

EXECUTIVE ORDER

CREATING A NATIONAL STRATEGIC COMPUTING INITIATIVE

By the authority wvested in me as President by the
Constitution and the laws of the United States of America,
and to maximize benefits of high-performance computing (HPC)

research, development, and deployment, it is hereby ordered as
follows:

Section 1. Policy. In order to maximize the benefits of
HPC for economic competitiveness and scientific discovery, the
United States Government must create a coordinated Federal
strategy in HPC research, development, and deployment.
Investment in HPC has contributed substantially to national
economic prosperity and rapidly accelerated scientific
discovery. Creating and deploying technology at the leading
edge is wvital to advancing my Administration's priorities and
spurring innovation. Accordingly, this order establishes the




Optimal hierarchical algorithms

® Asymptotically in scale, one should restrict attention to
algorithms with optimal scaling in memory requirements and

flops, O( k"N log? N)
® pistypically O, 1, or at worst 2
® / represents a local rank or polynomial expansion parameter

® Some optimal hierarchical algorithms

Fast Fourier Transform (1960°s)
Multigrid (1970°s)

Fast Multipole (1980°s)

Sparse Grids (1990°s)

H matrices (2000’s)

“With great computational power comes great algorithmic
responsibility.” — Longfei Gao, KAUST PhD, 2013
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Shared memory strong scaling is the game

¢ Expanding the number of nodes (processor-memory units)
beyond 10° is not a serious threat for

+ optimal algorithms

+ with amortizable precise load balancing on performance-
reliable nodes

+ connected with a log-diameter or high-radix switch network

® Challenge is usefully expanding the number of cores on a
node to 10°

+ must be done while memory and memory bandwidth per node
expand by (at best) ten-fold less (basically “strong” scaling)

+ don’t need to wait for full exascale systems to experiment in this
regime — the battle is fought on individual shared-memory
nodes
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Main challenge at exascale

® Almost all “good” algorithms in linear algebra,
differential equations, integral equations, signal
analysis, etc., require frequent synchronizing
global communication

+ inner products, norms, (global) transposes, and fresh (global)
residuals are “addictive” idioms

+ can make algorithms fragile even for smaller concurrency,
due to algorithmic load imbalance, hardware performance
variation, etc.

® Concurrency is heading into the billions of cores

o Temporarily leveled off at 3 million, but has to rise with
bounded clock speeds
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The four algorithmic frontiers
® Must adapt or substitute for favorite methods with new
methods that have
¢ reduced synchrony (in frequency and/or span)
+ greater arithmetic intensity
+ greater SIMD/SIMT-style shared-memory concurrency

¢ built-in resilience (“algorithm-based fault tolerance” or
ABFT) to arithmetic/memory faults or lost/delayed
messages
® Programming models and runtimes may have to be

stretched to accommodate

® Everything should be on the table for trades, beyond
disciplinary thresholds =» co-design
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Mind the gap

® Algorithms must adapt to span the gap between
aggressive applications and austere architectures

+ full employment program for computational
scientists and engineers

+ Like the new post-doc programs at Lawrence
Berkeley and Oak Ridge National Labs
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Required software

Model-related

Geometric modelers
Meshers
Discretizers

*

Adapftivity systems
Random no. generators
Subgridscale physics

Uncertainty
quantification

Dynamic load balancing

Graphs and
combinatorial algs.

Compression

Development-related
o Configuration systems

¢ Source-to-source
translators

+ Compilers
¢ Simulators
¢ Messaging systems
¢ Debuggers

o Profilers

High-end computers come
with little of this stuff.

Most has to be contributed
by the user community

Production-related

*

Dynamic resource
management

Dynamic performance
optimization
Authenticators

I/O systems
Visualization systems
Workflow controllers
Frameworks

Data miners

Fault monitoring,
reporting, and recovery
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® Poisson-like elliptic problems

+ Highest order operators in many PDE-based models
3 fluids, solids, E&M, radiation, DFT, MD, etc.

® Linear algebra on dense symmetric/Hermitian matrices
¢ Generalized eigenproblems in chemistry/materials

g coming from various simplified models of Schroedinger in
chemistry

¢ Covariance matrices
. coming from problems in spatial statistics
¢ Schur complement matrices

e coming from dimension reduction in PDEs

¢ Reduced Hessian matrices

. coming from problems in PDE-constrained optimization
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® Fast Fourier Transform

*

*

fragile (const. coeff.), but can be preconditioner for variable coeff.

distributed multi-D version requires complete in-place exchange

® Multigrid

*

* & 6 o o

L 4

*

sometimes hard to make robust for: anisotropy, inhomogeneity,
indefiniteness, skew-symmetry, multiple components

adaptive algebraic versions find coarse spaces automatically

coarse space basis vectors can be O(N)

algebraic versions suffer from coarse grid stencil bloat

can relax robustness requirements, use effectively as preconditioner
frequent synchronization between levels

main application vulnerability: Helmholtz-like indefiniteness

exascale features: poor arithmetic intensity, but good algoirthmic-
based fault tolerance, new mult-add version less synchronous
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® Fast Multipole

*

*

*

fragile (needs Green’s function), but interesting as a preconditioner
as a high-k solver typically loses to multigrid in BSP settings

exascale features: good SIMT structure with high arithmetic intensity
at leaves, concurrency across levels, not too synchronous

® Sparse Grids

*

complicated data structure; but “combination” technique recovers
some exploitable SIMT-like uniformity

e ‘H matrices

* & o o

perhaps the least mathematically fragile optimal solver
highly tunable by rank/admissibility to problem and to architecture
somewhat complicated data structures

exascale features: good SIMT structure with high arithmetic intensity
at leaves
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Sparse grids for high-D spatial data
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Combination of simple coarse spaces

................. @D v D
....... Q“ ce 932 - 0.
e IR R IR &
ce .Q.3.1. . : 9.2’2
fo = Z iyt — Z Py
Iy +hy=n+1 I +hy=n

c/o J. Gaercke et al. (U Bonn)
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Hierarchically low rank (H ) matrices

2 -1 0
-1 2 -1 <—>=[0][—1000]
-1 2 -1 1
A= -1 2 -1
-1 2 -1
-1 2 -1
-1 2 |

6 5 1/ 1
12 10/ 8 6 42<—>=[2][4321]
10 15112 9 6 3 3

8 12|16 12 8 4
6 912 15 10 5
4 6|8 10 12 6
2 3|4 5 6 7.

X
=N W ROt
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* [Hackbusch, 1999] : off-diagonal blocks of typical
differential and integral operators have low effective rank

— smoothness more critical than decay rate

* By exploiting low rank, & , memory requirements and
operation counts approach optimal in matrix dimension »
— polynomial in &k
— lin-log in n
— constants carry the day in comparisons with multigrid

* Such hierarchical representations navigate a compromise

— fewer blocks of larger rank (“weak admissibility”) or
— more blocks of smaller rank (“strong admissibility”)
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Tuning: ‘strong’ and ‘weak’ admissibility

- | i
ower
i i rank :b%% higher
e rank
P
::
%%%
%%I%
s
strong admissibility weak admissibility

after Hackbusch et al., 2003
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Graphical idiom for hierarchical structure

more general system
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Hierarchical matrix flavors

* [Hackbusch, 1999] : H-matrices
* [Hackbusch & Khoromskij, 2000] : H2-matrices

* [Lietal., 2009] : hierarchically semi-separable matrices
(HSS)

* [Ho, et al., 2012] : recursive skeletonization

* [Darve et al., 2013] : hierarchical off-diagonal low-rank
matrices (HODLR)

* [Yokota et al., 2014] : algebraic fast multipole

ScalA15 | 16 Nov 2015



Applications in linear algebra

®* When dense blocks arise in “routine” matrix operations,
replace them with hierarchical representations

* Use high accuracy (high rank, but typically much less
than full) to build “exact” solvers

* Use low accuracy (low rank) to build preconditioners
* [Kriemann, et al.] : Hlib

* [Li, etal.] : STRUMPACK

Inversion Complexity

* [Darve, et al.] : HODLR Operations | Storage

* [Poulson, et al.] : DMHM  |Dense | O(n”) On?)

[ H O(k®nlog®n) | O(knlogn
* [Amestoy, et al.] : MUMPS ( g"n) | O(knlogn)
* [Ltaief, et al.] : HBLAS
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Hierarchical structure
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H? hierarchical structure

o (2, )
(r,=) (r,*) |(r,*)
I :
J |

lllllllllllllllll

Aij =U; Sy V§
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Recursive construction of nested bases

Data structure components:

* dense blocks from original
matrix

* diagonal blocks of low-rank
matrices

® column bases and row bases
for low-rank matrices

* maps between bases of
different scales

ScalA15| 16 Nov 2015



Two-stage compression procedure

HNEEEN
ml | [ imim
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Approximation Error

1.00E+00
1.00E-01
1.00E-02
1.00E-03
1.00E-04
1.00E-05
1.00E-06
1.00E-07
1.00E-08
1.00E-09
1.00E-10
1.00E-11

Accuracy vs. rank

exponential decay kernel in H? form

—&#—N=65536

——N=131072

1 2 3 4 5 6 7 8 9 10 11
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To illustrate: stories of work in progress

® Beginning of the “KBLAS”
® Beginning of the “HBLAS”

® Beginning of an H-based direct solver for
Helmholtz

ScalA15| 16 Nov 2015



KBLAS: GPU implementations of

dense linear algebra

® Increase SIMT-style thread concurrency

¢

overcome memory bandwidth limitations of the
BLAS2 matrix-vector multiply, y=aAx+fy

coalesced memory accesses
double buffering

polyalgorithmic approach based on block size

ScalA15| 16 Nov 2015



Optimized GEMV/SYMYV Kernels

80 DSYMV-LOWER Performance on K20c (ECC OFF) DSYMV-LOWER Performance on K20c cluster
kblas-1.0 _ H 1gpu: kblas-1.0 : ! ! :
magmablas-1.4.0 __ H 1 gpu: magmablas-1.4.0 _ _ _
cublas-5.5(fast) __ i 2gpu: kblas-1.0 ____
70 cula-r17 2 gpu: m;gmab;zls»i.?.g R
H |as-5. gpu: kblas-1.0
cublas-5.5(slow) ... . 3 gpu: magmablas-1.4.0 _ _ _ i H i i i
D B T s m———
4 gpu: magmablas-1.4.0 _ _ _
50 5 gpu: kblas-1.0
5 gpu: magmablas-1.4.0
6 gpu: kblas-1.0
6 gpu: magmablas-1.4.0 _ _ _
7 gpu: kblas-1.0 ____
50 7 gpu: magmablas-1.4.0 _ _
8 gpu: kblas-1.0
@
g
=
0]
40
30
20 |
10
0 0 2000 4000 6000 10000 12000 14000 1600 48000

8000
Matrix Dimension

Single GPU and multi-GPU versions
NVIDIA has adopted for CuBLAS 6.0

c/o A. Abdelfattah (Oak Ridge National Lab/UT) ScalA15| 16 Nov 2015




<A

CUDA Toolkit v6.0

cuBLAS
1. Introduction
1.1. Data layout

1.2. New and Legacy
CuBLAS API

1.3. Example code

2. Using the cuBLAS API
2.1. General description
2.1.1. Error status
2.1.2. cuBLAS context
2.1.3. Thread Safety

2.1.4. Results
reproducibility

2.1.5. Scalar Parameters

2.1.6. Parallelism with
Streams

2.1.7. Batching Kernels

2.1.8. Cache
configuration

2.1.9. Device API Library

2.2. cuBLAS Datatypes
Reference

2.2.1. cublasHandle_t
2.2.2. cublasStatus_t

2.2.3. cublasOperation_t
2.2.4. cublasFillMode_t
2.2.5. cublasDiagType_t
2.2.6. cublasSideMode _t
2.2.7. cublasPointerMode _t
2.2.8. cublasAtomicsMode_t

2.3. cuBLAS Helper
Function Reference

2.3.1. cublasCreate()
2.3.2. cublasDestroy()
2.3.3. cublasGetVersion()
2.3.4. cublasSetStream()

“KBLAS inside”

DEVELOPER CUDA TOOLKIT DOCUMENTATION
nvinia ZONE
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HBLAS: GPU implementations of
hierarchical linear algebra

® Build on KBLAS to implement BLAS with
hierarchically low rank matrix data structures on
GPUs

¢ matrix-vector multiply, y =4 x

¢ tree-based scheme, following fast multipole

— ( Z Az-j).’z:—l— ( Z USZJVt) Tr = Z A’L]x] +ZU Z S?J Vt
(i,5)€D (i,7)€L (z j)ED ) el (i,5)€EL

v N

Dense mat-vecs L
operations Coupling phase

Upsweep

7

W
Downsweep

m c/o W. Boukaram (KAUST/NVIDIA) ScalAl5 | 16 Nov 2015




Upsweep/downsweep phases
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Comparison with HlibPro
® Problem: 1D integral equation (fully dense)

® Hardware
¢ 20-core Intel Xeon (2.8 GHz)

1

\

0.01 ///// —— HLibPro
7 —4— HICMA+MKL
0.001 | | | | | |

Problem Size

Time(Logscale)
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Preliminary GPU version
® Problem: 1D integral equation (fully dense)

® Hardware
¢ Tesla K40m NVIDIA GPU

250

200

150 -
== GPU Sustained BW
/;//(‘ == Streamed HiICMA+KBLAS
100 == HiCMA+KBLAS
/// ~—HiCMA+CUSPARSF
~CPU Sustained BW
0 ~o—HiCMA+MKL

Bandwidth (GB/s)

0~ . ,
v N4 Y <, <% Ny % < 2,
R 2 %, % %, 2, %, %, %
£4 @ () > % % 3N s %
6 < t4
Problem Size
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® Build on HBLAS to convert cyclic reduction to an
optimal complexity solver for non-constant
coefficient operators

+ Iimplement on multicore to compare against the
full-featured HlibPro library of R. Kriemann
until HBLAS is ready

¢+ compare with multigrid

i \
a c/o G. Chavez (KAUST) ScalA15 | 16 Nov 2015




Cyclic reduction complementary to
nested dissection

1D mesh
e © 6 o o o o o o o o o o o o o

First step of nested dissection

First step of cyclic reduction
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Preservation of tridiagonal structure
on Schur complementation

8 8|8

8 8 8

8 8

Agp — A21A1—11A12

T
T
T
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T
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888 888 888 88

8
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Preservation of tridiagonal structure
on permuted Schur complementation

.~ ~ e A i oF-13
PrAP — A1 A S = Ap A21A11 A1
| Az Ao x T T x -
" T = T — r x T r x
. r T T T T
. T T T xr r T X
T T T = T — r X r X
T T T T T r T
x T T r x
= T —lz z =z
T r x
Tr I
= r r z
r x
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Block structure in 2D

Issue: diagonal block inversion is non-optimal when FFT
does not apply

Enter hierarchical matrix arithmetic — how will rank
grow?
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Block recursive application

| Operations | Storage
CR ‘ O(N?) O(N*°log N)
ACR | O(Nlog*N) | O(NlogN)

LN
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Pseudocode

Algorithm 1 Accelerated Cyclic Reduction (ACR)

[ [
—_ O
..

R NSHmePNS

n=29,qg>2
Block-wise low-rank approximation of A: H® = A
Set-up right-hand side f
fori=1togdo
H® = PAPT
HED = Hgfz) HY) ® Hinverse(H)) ® H)
fED = - H)) ®?-l1nverse(H(1’l)) ® b,y

Updd = ’Hmverse(H('”)) fU+D
end for
Perform back-substitution

: Permute solution vector back to natural ordering
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Numerical experiments

Second-order finite difference discretization with
homogeneous BCs on the unit square

—V - k(Z)Vu = f(Z)
D1 F

Ey, Dy F
A= tridiag(Ez-, D;, Fz) = ' '
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Numerical experiments

2D experiments comparing ACR with H-LU and AMG

- Same forcing function
and homogeneous boundary conditions:

f(x) = 100e—100((z—0.5)?+(y—0.5)?) f("?
- Both codes
attempt a direct solution relative to the 100,
discretization error, using rank truncation:
H “h || Az — b, 50
U—u ~
2 1Bl

Both codes are
compiled with icc15 and O2 optimization
enabled. In the same computer system.

- Benchmark is against the H-LU
multi-core implementation of HLIBPro by
R. Kriemann et al.
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Hardware architecture

Metric Westmere Ivy Bridge Haswell AMD
Xeon X5650 Xeon E5-2680 v2 Xeon E5-2699 v3  Opteron 6376
Cores 12 20 36 64
Clock frequency (GHz) 2.66 2.9 2.3 2.6
L3 Total size (KB) 12,288 25,600 46,080 12,288
Cache/core (KB) 1,024 1,280 1,280 192
Bandwith (GB/s) 23.3 57.7 94.46 45.8
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Helmholtz: decreasing 4, fixed £

12 cores of Westmere

Viu + k*u = f(x)
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Helmholtz: fixed /4, increasing &
12 cores of Westmere

ACR
n k Error Memory (Bytes) Time (sec)
1,024 1 2.41 x 1076 3.81 x 10° 8.22
1,024 25 3.30 x 1076 3.81 x 10° 8.32
1,024 50 1.96 x 107%  3.81 x 10° 8.38
1,024 100 414 x 107  3.83 x 10° 8.62
H-LU 4X memory half the time
n k Error Memory (Bytes) Time (sec)
1,024 1 8.26 x 1076  1.07 x 10° 14.35
1,024 25 5.10 x 107®  1.04 x 10° 14.48
1,024 50 9.12x107%  1.03 x 10° 14.04

1,024 100 1.41 x107%  1.04 x 10° 14.52
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Helmholtz: fixed kA

12 cores of Westmere

ACR
n k Error Memory (Bytes) Time (sec)
64 5 5.72 x 1076 5.12 x 10° 0.09
128 10 7.41 x 1076 2.21 x 107 0.33
256 20 4.71 x 108 9.53 x 107 1.07
512 40 7.24 x 107 4.04 x 108 3.67
1,024 80 787x107%  1.72 x 10° 14.37
H-LU 2X memory same time
n k Error Memory (Bytes) Time (sec)
64 5 7.80 x 1076 3.64 x 10° 0.08
128 10 4.03 x 1076 1.57 x 107 0.21
256 20 4.12 x 106 6.20 x 107 0.94
512 40 7.42 x 106 2.56 x 108 3.88
1,024 80 9.12 x 106 1.04 x 10° 14.61
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Near linear complexity in problem size

250 I I T I =1
—— 1 core
—— 2 cores
—— 4 cores
—— 12 cores

200

150

Time (s)

100 [

50

N 106
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Radically truncated-rank ACR as
preconditioner for 3D Poisson

I I I I

——H-LU

—— AMG

4 [+ ACR (Weak)
1 [—— ACR (Strong)

10° F

ACR with weak
admissibility

Time (s)

can beat
101 F 4 multigridasa

preconditioner

on Poisson
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* ACR s not in competition with other hierarchical matrix
libraries; it is a customer
— algorithmic outer wrapper
— may unlock additional exploitable structure for concurrency and
reuse
* Internal H arithmetic engine is modular
— here, HLibPro®

— ride emerging software for each emerging hardware environment
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Hierarchical Computations on Manycore Architectures
(HiICMA — Arabic for “wisdom”)

Message-passing interface

Threads hwloc/netloc
Hilb KBLAS [] under development in the
La U2}
H2lib ECRC at KAUST
H2tools BLAS B available in global standard

open-source software
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KAUST’s Extreme Computing Research Center
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Mapping algorithms to architecture challenges

Reduce Increase Increase Algorithmic New

Student | Algorithm/Kernel || Synchronization | Intensity | Concurrency | Resilience | Capabilities
Ahmad BLAS2 X X

Ali BLAS2/3 X X

Amani Multigrid X X X

Chengbin | Non-neg. mat. fact. X X
Dalal Eigen/SVD X X

Gustavo H-Schur X X

Huda FMM precond. X X X

Lulu Nonlinear precond. X X X
Mohammed | Unstruct. PDEs X X

Mustafa FMM X X X

Noha BEM X X X

Tareq Stencil eval. X X

Wajih H-BLAS X X

PhD thesis topics in the ECRC all attempt to impact scaling of

important algorithmic infrastructure to the exascale
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Mapping algorithms to application challenges

SIMULATION

ANALYTICS
Fluid Adaptive . Electro . Seismic Spatial Graph
L dynamics Optics SIS magnetics e Imaging Statistics Algorithms
Dense Hatem,
Hatem
Linear/Eigen Ahmad, Dalal ’ Hatem
Solvers Ali ala
Stefano
=l Matteo, L .
Nonlinear/Iter h d Amani, Stefano Chengbin
Solvers Mohame Lulu
N Rio, Rio, Rio,
Fast Multipole
Huda Mustafa Noha
i i George George Alex
Huerarc.:hlcal George ge, 8 » »
Matrices Gustavo Wajih George
s i Daniel,
tencf Hatem Hatem,
Evaluation
Tareq
Current and i i
Samtaney, Observaiimre GROMAGS, ) Sun, Schuster, e S!’\anghal
Planned Stanford, de Paris, Bagci Aramco, Total, Jiaotong
Japan CREST NVIDIA . -
Collaborators NASA, Intel NVIDIA NVIDIA Aramco University

Students and scientists in the ECRC are motivated by at least

one “grand challenge” application requiring scaling
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ECRC: skating to where the puck will be

MWD multicore wavefront diamond-tiling stencil algorithm
reduces memory bandwidth pressure in shared-cache multicore
processors

BDDC parallel preconditioner for high-contrast elliptic PDEs PETSc

reduces synchronization by doing lots of local flops

MSPIN nonlinear preconditioner for Newton methods
replaces most global synchronizations with local problems

FMM(¢) preconditioner for elliptic problems
has good asymptotic complexity but a high constant; we HiCMA
use in low accuracy (low constant) as a preconditioner

QDWH-SVD singular value decomposition

generates arbitrary amounts of dynamically schedulable concurrency
(already beats state-of-the-art on GPUs even though it HiCMA
requires many more flops)

Mult-Add MG multigrid algorithm

creates additional concurrency without the usual convergence
penalty of additive MG through elaborate inter-grid transfers

Girih

PETSc

Hypre
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Bad news/good news (1) i/

® One will have to explicitly control more of
the data motion
® carries the highest energy cost in the exascale

computational environment

® One finally will get the privilege of
controlling the vertical data motion

® horizontal data motion under control of users already

® but vertical replication into caches and registers was
(until recently with GPUs) mainly scheduled and laid

out by hardware and runtime systems, mostly invisibly
to users
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Bad news/good news (2) {/

e “Optimal” formulations and algorithms may lead
to poorly proportioned computations for exascale
hardware resource balances

® today’s “optimal” methods presume flops are
expensive and memory and memory bandwidth are
cheap
® Architecture may lure scientific and engineering
users into more arithmetically intensive
formulations than (mainly) PDEs

® tomorrow’s optimal methods will (by definition) evolve
to conserve whatever is expensive
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Bad news/good news (3) {/

e FKully hardware-reliable executions may be regarded as
too costly/synchronization-vulnerable

® Algorithmic-based fault tolerance (ABFT) will be
cheaper than hardware and OS-mediated reliability

® developers will partition their data and their program units into
two sets

® asmall set that must be done reliably (with today’s standards for
memory checking and IEEE ECC)

® alarge set that can be done fast and unreliably, knowing the errors
can be either detected, or their effects rigorously bounded

e Examples already in direct and iterative linear algebra

® Anticipated by Von Neumann, 1956 (“Synthesis of reliable
organisms from unreliable components”)
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Bad news/good news (4) {/

® Default use of (uniform) high precision in nodal bases on
dense grids may decrease, to save storage and bandwidth

® representation of a smooth function in a hierarchical basis or on
sparse grids requires fewer bits than storing its nodal values, for
equivalent accuracy

® we will have to compute and communicate “deltas” between states
rather than the full state quantities, as when double precision was
once expensive (e.g., iterative correction in linear algebra)

® a generalized “combining network” node or a smart memory
controller may remember the last address, but also the last values,
and forward just the deltas
® Equidistributing errors properly to minimize resource use
will lead to innovative error analyses in numerical analysis
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Bad news/good news (5) {/

® FKully deterministic algorithms may be regarded as
too synchronization-vulnerable

® rather than wait for missing data, we may predict it using various
means and continue

® we do this with increasing success in problems without models
(“big data”)
® should be fruitful in problems coming from continuous models

® ‘“apply machine learning to the simulation machine”

® A rich numerical analysis of algorithms that make
use of statistically inferred “missing” quantities may
emerge

@ future sensitivity to poor predictions can often be estimated

e numerical analysts will use statistics, signal processing, ML, etc.
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National Strategic Computing Initiative (NSCI)*

* Accelerate delivery of an exascale computing system that integrates hardware
and software capability to deliver approximately 100 times the performance of
current systems across a range of applications

* Increase coherence between the technology base used for modeling and
simulation and that used for data analytic computing

* Establish a path forward for HPC systems after the limits of current
semiconductor technology are reached (the “post-Moore’s Law era™)

* Increase the capacity and capability of a national HPC ecosystem by
employing a holistic approach including networking technology,
foundational algorithms and software, and workforce development

* Develop a public-private collaboration to ensure that the benefits of the R&D

advances are shared between government, industrial, and academic sectors

“Not since the signing of legislation in 1991 for the HPCC initiative has the nation articulated as bold and
specific a goal for the advancement of HPC and the benefits to be derived.”

— Thomas Sterling and William Gropp, on NCSI in HPCWire
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Exascale algorithms “mind the gap”

Architectures

Applications
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