
ScalA15 | 16 Nov 2015

David Keyes, Applied Mathematics & Computational Science
Director, Extreme Computing Research Center (ECRC)
King Abdullah University of Science and Technology

Facing the Four Algorithmic Frontiers of Exascale

“A good player plays where the puck is, while a great
player skates to where the puck is going to be.” –

– Wayne Gretzsky

ScalA15 | 16 Nov 2015

Aspiration for this brief talk
To paraphrase Gretzsky:

 “Algorithms for where architectures are going to be”

Such algorithms may or may not be the best today;
however, hardware trends can be extrapolated to
their sweet spots – as the traditional objective of

conserving flops is replaced with the new objective
of reducing communication and synchronization –

for a new computational complexity calculus.

QEERI, 14 Apr 2015

Reflections on algorithmic tuning from
this morning’s talks – a brave new world!
●  Classic trade-offs (pre-exascale/SPMD Bulk Synchronous)

§  recompute on-the-fly for less storage/traffic
§  more expensive inner iterations for fewer outer iterations
§  redundant computation for less communication
§  less stability for less frequent global reductions

●  New trade-offs (energy-austere/emerging architectures)
§  algorithmic responsibility for resilience for less power/energy
§  redundant solves for shorter executions
§  over-decomposition for less synchrony
§  less determinism for less synchrony
§  more flops per iteration for fewer iterations
§  more flops for more concurrency
§  more precision for fewer iterative corrections

ScalA15 | 16 Nov 2015

QEERI, 14 Apr 2015

Some exascale trends:
the four architectural frontiers

●  Clock rates cease to increase while arithmetic
capability continues to increase dramatically w/
concurrency consistent with Moore’s Law

●  Memory storage capacity diverges exponentially below
arithmetic capacity

●  Transmission capability (memory BW and network
BW) diverges exponentially below arithmetic capability

●  Mean time between hardware interrupts shortens
 ! Billions of $ € £ ¥ of scientific software worldwide
hangs in the balance until better algorithms arrive to span
the architecture-applications gap

ScalA15 | 16 Nov 2015

Jack Dongarra
Pete Beckman

Terry Moore
Patrick Aerts

Giovanni Aloisio
Jean-Claude Andre

David Barkai
Jean-Yves Berthou

Taisuke Boku
Bertrand Braunschweig

Franck Cappello
Barbara Chapman

Xuebin Chi

Alok Choudhary
Sudip Dosanjh
Thom Dunning
Sandro Fiore

Al Geist
Bill Gropp

Robert Harrison
Mark Hereld

Michael Heroux
Adolfy Hoisie

Koh Hotta
Yutaka Ishikawa
Fred Johnson

Sanjay Kale
Richard Kenway

David Keyes
Bill Kramer

Jesus Labarta
Alain Lichnewsky
Thomas Lippert

Bob Lucas
Barney Maccabe
Satoshi Matsuoka

Paul Messina
Peter Michielse

Bernd Mohr

Matthias Mueller
Wolfgang Nagel

Hiroshi Nakashima
Michael E. Papka

Dan Reed
Mitsuhisa Sato

Ed Seidel
John Shalf

David Skinner
Marc Snir

Thomas Sterling
Rick Stevens
Fred Streitz

Bob Sugar
Shinji Sumimoto

William Tang
John Taylor

Rajeev Thakur
Anne Trefethen
Mateo Valero

Aad van der Steen
Jeffrey Vetter
Peg Williams

Robert Wisniewski
Kathy Yelick

SPONSORS

ROADMAP 1.0

 Authority for architectural roadmap:
www.exascale.org/iesp

The International Exascale
Software Roadmap,
J. Dongarra, P. Beckman, et al.,
International Journal of High
Performance Computer
Applications 25(1), 2011, ISSN
1094-3420.

ScalA15 | 16 Nov 2015

QEERI, 14 Apr 2015

Why exa- is different

(Intel Sandy Bridge, 2.27B transistors)

 after DARPA report of P. Kogge (ND) et al. and T. Schulthess (ETH)

Going across the die will require an order of magnitude more!
DARPA study predicts that by 2019:
u  Double precision FMADD flop: 11pJ
u  cross-die per word access (1.2pJ/mm): 24pJ (= 96pJ overall)

Which steps of FMADD take more energy?

input
input

input

output

four

ScalA15 | 16 Nov 2015

QEERI, 14 Apr 2015

Today’s power costs per operation

 c/o J. Shalf (LBNL)

Remember that a pico (10-12) of something done exa (1018)
times per second is mega (106)-somethings per second
u  100 pJ at 1 Eflop/s is 100 MW (for the flop/s only!)
u  1 MW-year costs about $1M ($0.12/KW-hr × 8760 hr/yr)

•  We “use” 1.4 KW continuously, so 100MW is 71,000 people

Operation approximate energy cost
DP FMADD flop 100 pJ
DP DRAM read-to-register 4800 pJ
DP word transmit-to-neighbor 7500 pJ
DP word transmit-across-system 9000 pJ

ScalA15 | 16 Nov 2015

QEERI, 14 Apr 2015

Why exa- is different

Moore’s Law (1965) does not end but
Dennard’s MOSFET scaling (1972) does

Eventually processing is
limited by transmission,
as known for > 4 decades

Robert Dennard, IBM
(inventor of DRAM, 1966)

ScalA15 | 16 Nov 2015

Simulation enabled by price and capability

	

	

Year	

Cost	
 per	

delivered	

Gigaflop/s	

1989	
 $2,500,000	
 	
 	
 	
 	
 	
 	
 	

1999	
 $6,900	

2009	
 $8	

	

	

Year	

Gigaflop/s	

delivered	
 to	

applica4ons	

1988	
 1	

1998	
 1,020	

2008	
 1,350,000	

By the Gordon Bell Prize, awarded since 1988, simulation cost
per performance has improved by nearly a million times in
two decades. Performance on real applications (e.g.,
mechanics, materials, petroleum reservoirs, gravitation) has
improved more than a million times.

Gordon Bell
Prize: Peak

Performance

Gordon Bell
Prize: Price

Performance

Scientists and engineers plan along these trends …

ScalA15 | 16 Nov 2015

… likewise, President Obama

ScalA15 | 16 Nov 2015

Optimal hierarchical algorithms
n  Asymptotically in scale, one should restrict attention to

algorithms with optimal scaling in memory requirements and
flops, O(kr N logp N)

n  p is typically 0 , 1 , or at worst 2
n  k represents a local rank or polynomial expansion parameter
n  Some optimal hierarchical algorithms

◆  Fast Fourier Transform (1960’s)
◆  Multigrid (1970’s)
◆  Fast Multipole (1980’s)
◆  Sparse Grids (1990’s)
◆  H matrices (2000’s)
 “With great computational power comes great algorithmic

responsibility.” – Longfei Gao, KAUST PhD, 2013

ScalA15 | 16 Nov 2015

Shared memory strong scaling is the game
n  Expanding the number of nodes (processor-memory units)

beyond 106 is not a serious threat for
◆  optimal algorithms
◆  with amortizable precise load balancing on performance-

reliable nodes
◆  connected with a log-diameter or high-radix switch network

n  Challenge is usefully expanding the number of cores on a
node to 103

◆  must be done while memory and memory bandwidth per node
expand by (at best) ten-fold less (basically “strong” scaling)

◆  don’t need to wait for full exascale systems to experiment in this
regime – the battle is fought on individual shared-memory
nodes

ScalA15 | 16 Nov 2015

Main challenge at exascale
n Almost all “good” algorithms in linear algebra,

differential equations, integral equations, signal
analysis, etc., require frequent synchronizing
global communication
◆  inner products, norms, (global) transposes, and fresh (global)

residuals are “addictive” idioms
◆  can make algorithms fragile even for smaller concurrency,

due to algorithmic load imbalance, hardware performance
variation, etc.

n Concurrency is heading into the billions of cores
◆  Temporarily leveled off at 3 million, but has to rise with

bounded clock speeds

ScalA15 | 16 Nov 2015

Bulk synchronous
generation

Energy-aware
generation

ScalA15 | 16 Nov 2015

The four algorithmic frontiers
n  Must adapt or substitute for favorite methods with new

methods that have
◆  reduced synchrony (in frequency and/or span)
◆  greater arithmetic intensity
◆  greater SIMD/SIMT-style shared-memory concurrency
◆  built-in resilience (“algorithm-based fault tolerance” or

ABFT) to arithmetic/memory faults or lost/delayed
messages

n  Programming models and runtimes may have to be
stretched to accommodate

n  Everything should be on the table for trades, beyond
disciplinary thresholds ! co-design

ScalA15 | 16 Nov 2015

Mind the gap

◆  full employment program for computational
scientists and engineers

◆  Like the new post-doc programs at Lawrence
Berkeley and Oak Ridge National Labs

n Algorithms must adapt to span the gap between
aggressive applications and austere architectures

ScalA15 | 16 Nov 2015

Required software
 Model-related

◆  Geometric modelers
◆  Meshers
◆  Discretizers
◆  Partitioners
◆  Solvers / integrators
◆  Adaptivity systems
◆  Random no. generators
◆  Subgridscale physics
◆  Uncertainty

quantification
◆  Dynamic load balancing
◆  Graphs and

combinatorial algs.
◆  Compression

 Development-related
u  Configuration systems
u  Source-to-source

translators
u  Compilers
u  Simulators
u  Messaging systems
u  Debuggers
u  Profilers

 Production-related
u  Dynamic resource

management
u  Dynamic performance

optimization
u  Authenticators
u  I/O systems
u  Visualization systems
u  Workflow controllers
u  Frameworks
u  Data miners
u  Fault monitoring,

reporting, and recovery

High-end computers come
with little of this stuff.

Most has to be contributed
by the user community

ScalA15 | 16 Nov 2015

•  Poisson-like elliptic problems
◆  Highest order operators in many PDE-based models

■  fluids, solids, E&M, radiation, DFT, MD, etc.
•  Linear algebra on dense symmetric/Hermitian matrices

◆  Generalized eigenproblems in chemistry/materials
■  coming from various simplified models of Schroedinger in

chemistry
◆  Covariance matrices

■  coming from problems in spatial statistics
◆  Schur complement matrices

■  coming from dimension reduction in PDEs
◆  Reduced Hessian matrices

■  coming from problems in PDE-constrained optimization

Dominant cycle burners

ScalA15 | 16 Nov 2015

Hierarchical algorithms (esp. for PDEs)
n  Fast Fourier Transform

◆  fragile (const. coeff.), but can be preconditioner for variable coeff.
◆  distributed multi-D version requires complete in-place exchange

n  Multigrid
◆  sometimes hard to make robust for: anisotropy, inhomogeneity,

indefiniteness, skew-symmetry, multiple components
◆  adaptive algebraic versions find coarse spaces automatically
◆  coarse space basis vectors can be O(N)
◆  algebraic versions suffer from coarse grid stencil bloat
◆  can relax robustness requirements, use effectively as preconditioner
◆  frequent synchronization between levels
◆  main application vulnerability: Helmholtz-like indefiniteness
◆  exascale features: poor arithmetic intensity, but good algoirthmic-

based fault tolerance, new mult-add version less synchronous

ScalA15 | 16 Nov 2015

Hierarchical algorithms (esp. for PDEs)
n  Fast Multipole

◆  fragile (needs Green’s function), but interesting as a preconditioner
◆  as a high-k solver typically loses to multigrid in BSP settings
◆  exascale features: good SIMT structure with high arithmetic intensity

at leaves, concurrency across levels, not too synchronous

n  Sparse Grids
◆  complicated data structure; but “combination” technique recovers

some exploitable SIMT-like uniformity

n  H matrices
◆  perhaps the least mathematically fragile optimal solver
◆  highly tunable by rank/admissibility to problem and to architecture
◆  somewhat complicated data structures
◆  exascale features: good SIMT structure with high arithmetic intensity

at leaves

ScalA15 | 16 Nov 2015

Sparse grids for high-D spatial data

O(nd)→O(n ⋅ (logn)d−1)
Storage complexity

(spatial dimension d)

O(n− p)→O(n− p ⋅ (logn)k)
Representation accuracy

(order p; k depends on p, d)

c/o J. Gaercke et al. (TU Bonn)

ScalA15 | 16 Nov 2015

Combination of simple coarse spaces

c/o J. Gaercke et al. (U Bonn)

ScalA15 | 16 Nov 2015

Hierarchically low rank (H) matrices

ScalA15 | 16 Nov 2015

General tool: hierarchical matrices
•  [Hackbusch, 1999] : off-diagonal blocks of typical

differential and integral operators have low effective rank
–  smoothness more critical than decay rate

•  By exploiting low rank, k , memory requirements and
operation counts approach optimal in matrix dimension n
–  polynomial in k
–  lin-log in n
–  constants carry the day in comparisons with multigrid

•  Such hierarchical representations navigate a compromise
–  fewer blocks of larger rank (“weak admissibility”) or
– more blocks of smaller rank (“strong admissibility”)

ScalA15 | 16 Nov 2015

weak	
 admissibility	
 strong	
 admissibility	

a<er	
 Hackbusch	
 et	
 al.,	
 2003	
 	

higher	

rank	

lower	

rank	

Tuning: ‘strong’ and ‘weak’ admissibility

ScalA15 | 16 Nov 2015

more	
 general	
 system	

Graphical idiom for hierarchical structure

ScalA15 | 16 Nov 2015

•  [Hackbusch, 1999] : H-matrices
•  [Hackbusch & Khoromskij, 2000] : H2-matrices
•  [Li et al., 2009] : hierarchically semi-separable matrices

(HSS)
•  [Ho, et al., 2012] : recursive skeletonization
•  [Darve et al., 2013] : hierarchical off-diagonal low-rank

matrices (HODLR)
•  [Yokota et al., 2014] : algebraic fast multipole
•  …

Hierarchical matrix flavors

ScalA15 | 16 Nov 2015

•  When dense blocks arise in “routine” matrix operations,
replace them with hierarchical representations

•  Use high accuracy (high rank, but typically much less
than full) to build “exact” solvers

•  Use low accuracy (low rank) to build preconditioners
 •  [Kriemann, et al.] : Hlib

•  [Li, et al.] : STRUMPACK
•  [Darve, et al.] : HODLR
•  [Poulson, et al.] : DMHM
•  [Amestoy, et al.] : MUMPS
•  [Ltaief, et al.] : HBLAS

Inversion Complexity

Applications in linear algebra

ScalA15 | 16 Nov 2015

Hierarchical structure

ScalA15 | 16 Nov 2015

H2 hierarchical structure

ScalA15 | 16 Nov 2015

Recursive construction of nested bases

Data structure components:
•  dense blocks from original

matrix
•  diagonal blocks of low-rank

matrices
•  column bases and row bases

for low-rank matrices
•  maps between bases of

different scales

ScalA15 | 16 Nov 2015

Two-stage compression procedure

ScalA15 | 16 Nov 2015

Accuracy vs. rank

exponential decay kernel in H2 form

ScalA15 | 16 Nov 2015

•  Beginning of the “KBLAS”
•  Beginning of the “HBLAS”
•  Beginning of an H-based direct solver for

Helmholtz

To illustrate: stories of work in progress

ScalA15 | 16 Nov 2015

KBLAS: GPU implementations of
dense linear algebra

•  Increase SIMT-style thread concurrency
u  overcome memory bandwidth limitations of the

BLAS2 matrix-vector multiply, y = α A x + β y
u  coalesced memory accesses
u  double buffering
u  polyalgorithmic approach based on block size

ScalA15 | 16 Nov 2015

Single GPU and multi-GPU versions
NVIDIA has adopted for CuBLAS 6.0

c/o A. Abdelfattah (Oak Ridge National Lab/UT)

Optimized GEMV/SYMV kernels

ScalA15 | 16 Nov 2015

“KBLAS inside”

ScalA15 | 16 Nov 2015

ScalA15 | 16 Nov 2015

HBLAS: GPU implementations of
hierarchical linear algebra

•  Build on KBLAS to implement BLAS with
hierarchically low rank matrix data structures on
GPUs
u  matrix-vector multiply, y = A x
u  tree-based scheme, following fast multipole

c/o W. Boukaram (KAUST/NVIDIA)

ScalA15 | 16 Nov 2015

Upsweep/downsweep phases

ScalA15 | 16 Nov 2015

Comparison with HlibPro
•  Problem: 1D integral equation (fully dense)
•  Hardware

u  20-core Intel Xeon (2.8 GHz)

ScalA15 | 16 Nov 2015

Preliminary GPU version
•  Problem: 1D integral equation (fully dense)
•  Hardware

u  Tesla K40m NVIDIA GPU

ScalA15 | 16 Nov 2015

Accelerated Cyclic Reduction

•  Build on HBLAS to convert cyclic reduction to an
optimal complexity solver for non-constant
coefficient operators
u  implement on multicore to compare against the

full-featured HlibPro library of R. Kriemann
until HBLAS is ready

u  compare with multigrid

c/o G. Chavez (KAUST)

ScalA15 | 16 Nov 2015

Cyclic reduction complementary to
nested dissection

1D mesh

First step of nested dissection

First step of cyclic reduction

ScalA15 | 16 Nov 2015

Preservation of tridiagonal structure
on Schur complementation

ScalA15 | 16 Nov 2015

Preservation of tridiagonal structure
on permuted Schur complementation

ScalA15 | 16 Nov 2015

Block structure in 2D

Issue: diagonal block inversion is non-optimal when FFT
does not apply
Enter hierarchical matrix arithmetic — how will rank
grow?

ScalA15 | 16 Nov 2015

Block recursive application

ScalA15 | 16 Nov 2015

Pseudocode

ScalA15 | 16 Nov 2015

Numerical experiments
Second-order finite difference discretization with
homogeneous BCs on the unit square

ScalA15 | 16 Nov 2015

Numerical experiments
2D experiments comparing ACR with H-LU and AMG

ScalA15 | 16 Nov 2015

Hardware architecture

ScalA15 | 16 Nov 2015

Smoothly varying diffusivity
12 cores of Westmere

ScalA15 | 16 Nov 2015

Helmholtz: decreasing h, fixed k
12 cores of Westmere

ScalA15 | 16 Nov 2015

Helmholtz: fixed h, increasing k
12 cores of Westmere

ACR

H-LU 4x memory half the time

ScalA15 | 16 Nov 2015

Helmholtz: fixed kh
12 cores of Westmere

ACR

H-LU 2x memory same time

ScalA15 | 16 Nov 2015

Near linear complexity in problem size

ScalA15 | 16 Nov 2015

Radically truncated-rank ACR as
preconditioner for 3D Poisson

ACR with weak
admissibility

can beat
multigrid as a
preconditioner

on Poisson

ScalA15 | 16 Nov 2015

Comments
•  ACR is not in competition with other hierarchical matrix

libraries; it is a customer
–  algorithmic outer wrapper
– may unlock additional exploitable structure for concurrency and

reuse

•  Internal H arithmetic engine is modular
–  here, HLibPro®

–  ride emerging software for each emerging hardware environment

ScalA15 | 16 Nov 2015

under development in the
ECRC at KAUST

available in global standard
open-source software

Hierarchical Computations on Manycore Architectures
(HiCMA – Arabic for “wisdom”)

ScalA15 | 16 Nov 2015

KAUST’s Extreme Computing Research Center

Embracing	
 the	

opportuni1es	

of	
 exascale	

1:1

 2:4

3:9

4:4

5:11

6:8

 7:6

8:5

9:7

10:4

11:4

12:2

13:2

14:3

15:3

16:1

 17:2

18:1

19:1

20:1

21:1

22:1

23:1

24:1

ScalA15 | 16 Nov 2015

PhD thesis topics in the ECRC all attempt to impact scaling of
important algorithmic infrastructure to the exascale

Mapping algorithms to architecture challenges

ScalA15 | 16 Nov 2015

Students and scientists in the ECRC are motivated by at least
one “grand challenge” application requiring scaling

Mapping algorithms to application challenges

ScalA15 | 16 Nov 2015

MWD multicore wavefront diamond-tiling stencil algorithm

 reduces memory bandwidth pressure in shared-cache multicore
 processors

BDDC parallel preconditioner for high-contrast elliptic PDEs
 reduces synchronization by doing lots of local flops

MSPIN nonlinear preconditioner for Newton methods
 replaces most global synchronizations with local problems

FMM(ε) preconditioner for elliptic problems
 has good asymptotic complexity but a high constant; we
 use in low accuracy (low constant) as a preconditioner

QDWH-SVD singular value decomposition
 generates arbitrary amounts of dynamically schedulable concurrency
 (already beats state-of-the-art on GPUs even though it

 requires many more flops)
Mult-Add MG multigrid algorithm

 creates additional concurrency without the usual convergence
 penalty of additive MG through elaborate inter-grid transfers

ECRC: skating to where the puck will be
Girih

PETSc

PETSc

HiCMA

HiCMA

Hypre

ScalA15 | 16 Nov 2015

Bad news/good news (1)
●  One will have to explicitly control more of

the data motion
●  carries the highest energy cost in the exascale

computational environment

●  One finally will get the privilege of
controlling the vertical data motion
●  horizontal data motion under control of users already
●  but vertical replication into caches and registers was

(until recently with GPUs) mainly scheduled and laid
out by hardware and runtime systems, mostly invisibly
to users

ScalA15 | 16 Nov 2015

●  “Optimal” formulations and algorithms may lead
to poorly proportioned computations for exascale
hardware resource balances
●  today’s “optimal” methods presume flops are

expensive and memory and memory bandwidth are
cheap

●  Architecture may lure scientific and engineering
users into more arithmetically intensive
formulations than (mainly) PDEs
●  tomorrow’s optimal methods will (by definition) evolve

to conserve whatever is expensive

Bad news/good news (2)

ScalA15 | 16 Nov 2015

●  Fully hardware-reliable executions may be regarded as
too costly/synchronization-vulnerable

●  Algorithmic-based fault tolerance (ABFT) will be
cheaper than hardware and OS-mediated reliability
●  developers will partition their data and their program units into

two sets
●  a small set that must be done reliably (with today’s standards for

memory checking and IEEE ECC)
●  a large set that can be done fast and unreliably, knowing the errors

can be either detected, or their effects rigorously bounded

●  Examples already in direct and iterative linear algebra
●  Anticipated by Von Neumann, 1956 (“Synthesis of reliable

organisms from unreliable components”)

Bad news/good news (3)

ScalA15 | 16 Nov 2015

●  Default use of (uniform) high precision in nodal bases on
dense grids may decrease, to save storage and bandwidth
●  representation of a smooth function in a hierarchical basis or on

sparse grids requires fewer bits than storing its nodal values, for
equivalent accuracy

●  we will have to compute and communicate “deltas” between states
rather than the full state quantities, as when double precision was
once expensive (e.g., iterative correction in linear algebra)

●  a generalized “combining network” node or a smart memory
controller may remember the last address, but also the last values,
and forward just the deltas

●  Equidistributing errors properly to minimize resource use
will lead to innovative error analyses in numerical analysis

Bad news/good news (4)

ScalA15 | 16 Nov 2015

●  Fully deterministic algorithms may be regarded as
too synchronization-vulnerable
●  rather than wait for missing data, we may predict it using various

means and continue
●  we do this with increasing success in problems without models

(“big data”)
●  should be fruitful in problems coming from continuous models
●  “apply machine learning to the simulation machine”

●  A rich numerical analysis of algorithms that make
use of statistically inferred “missing” quantities may
emerge
●  future sensitivity to poor predictions can often be estimated
●  numerical analysts will use statistics, signal processing, ML, etc.

Bad news/good news (5)

ScalA15 | 16 Nov 2015

•  Accelerate delivery of an exascale computing system that integrates hardware
and software capability to deliver approximately 100 times the performance of
current systems across a range of applications

•  Increase coherence between the technology base used for modeling and
simulation and that used for data analytic computing

•  Establish a path forward for HPC systems after the limits of current
semiconductor technology are reached (the “post-Moore’s Law era”)

•  Increase the capacity and capability of a national HPC ecosystem by
employing a holistic approach including networking technology,
foundational algorithms and software, and workforce development

•  Develop a public-private collaboration to ensure that the benefits of the R&D
advances are shared between government, industrial, and academic sectors

 “Not since the signing of legislation in 1991 for the HPCC initiative has the nation articulated as bold and

specific a goal for the advancement of HPC and the benefits to be derived.”

 − Thomas Sterling and William Gropp, on NCSI in HPCWire

* Slightly condensed for for slide display

National Strategic Computing Initiative (NSCI)*

david.keyes@kaust.edu.sa

Architectures	
 ApplicaCons	

Exascale algorithms “mind the gap”

ScalA15 | 16 Nov 2015

Thank you

 ششككرراا

david.keyes@kaust.edu.sa

