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* Overview of High Performance
Computing

* With Extreme Computing the “rules”
for computing have changed
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= White House HPC Initiative

The White House
Office of the Press Secretary

For Immediate Release July 29, 2015

Executive Order — Creating a
National Strategic Computing
Initiative

EXECUTIVE ORDER

CREATING A NATIONAL STRATEGIC COMPUTING INITIATIVE

By the authority vested in me as President by the Constitution and
the laws of the United States of America, and to maximize benefits
of high-performance computing (HPC) research, development, and
deployment, it is hereby ordered as follows:

Section 1. Policy. In order to maximize the benefits of HPC for
economic competitiveness and scientific discovery, the United
States Government must create a coordinated Federal strategy in
HPC research, development, and deployment. Investment in HPC
has contributed substantially to national economic prosperity and
rapidly accelerated scientific discovery. Creating and deploying
technology at the leading edge is vital to advancing my
Administration's priorities and spurring innovation. Accordingly,
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< NSCI has 5 Strategic Themes

* (Create systems that can apply exaflops of
computing power to exabytes of data.

* Keep the United States at the forefront of HPC
capabilities.

* Improve HPC application developer productivity

* Make HPC readily available

* Establish hardware technology for future HPC
systems.



0. Performance Development of HPC over
~ the Last 23 Years from the Top500
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Projected Performance Development
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State of Supercomputing in 2015

Pflops (> 10"> Flop/s) computing fully established
with 81 systems.

Three technology architecture possibilities or
“swim lanes” are thriving.

« Commodity (e.g. Intel)

« Commodity + accelerator (e.g. GPUs) (104 systems)

« Special purpose lightweight cores (e.g. IBM BG, ARM,
Knights Landing)

Interest in supercomputing is now worldwide, and
growing in many new markets (over 50% of Top500
computers are in industry).

Exascale (108 Flop/s) projects exist in many
countries and regions.

Intel processors largest share, 89% followed by
AMD, 4%.
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« July 2015: The TOP 10 Systems
Rank Site Computer Country Cores [ﬁ ;;c:;:s] Iéeglf ,;:ﬂ;; I'%:/IZI;:
National Super Tianhe-2 NUDT,
1 Computer Center in | Xeon 12C 2.26Hz + IntelXeon 3,120, 33.9 62 17.8 | 1905
Guangzhou 1
DOE / 05 Titan, Cray XK7, AMD (16C) +
2 : Nvidia Kepler 6PU (14c) + 560,640 | 17.6 65 8.3 |2120
Oak Ridge Nat Lab
Custom
DOE / NNSA Sequoia, BlueGene/Q (16¢)
& L Livermore Nat Lab + custom LB | = 7.9 || 2063
RIKEN Advanced Inst K computer Fujitsu SPARC64
4 for Comp Sci VIIIfx (8¢c) + Custom 705,024 10.5 93 12.7 || 827
DOE / Os Mira, BlueGene/Q (16¢)
5 Argonne Nat Lab + Custom 786,432 | 8.16 85 || 3.95 | 2066
. iz Daint, Cray XC30, Xeon 8C +
6 Swiss CSCS [J Nvidia Kepler (14c) + Custom 115,984 6.27 81 n 2.3 | 2726
Shaheen II, Cray XC30, Xeon
7 KAUST 16¢ + Custom . Arabi 196,608 | 5.54 77 | 4.5 || 1146
Texas Advanced |[Stampede, Dell Intel (8c) + :?:*‘.;: -
8 | Computing Center Xeon Phi (61c) + IB Ppr) 204900 5.17 | 61 || 4.5 || 1489
Forschungszentrum JUQUEEN, BlueGene/Q, ’
e Juelich (FZJ) | Power BQC 16C 1.66Hz+Custom bl | SR G R | (e
DOE / NNSA Vulcan, BlueGene/Q, *
10 || Livermore Nat Lab Power BQC 16C 1.66Hz+Custom " 393,216 ) 4.25 | 85| 1.97|)2177
500 (422) Software Comp HP Cluster USA 18,896 .309 48
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November 2015: The TOP 10 Systems

a— )
. Rmax | 7% of| Power IMF/ops
Rank Site Computer Country Cores [Pflops] | Peak| [Mw]|l/Watt
National Super Tianhe-2 NUDT,
1 Computer Center in | Xeon 12C + IntelXeon Phi (57¢c) 3,120, 33.9 62 17.8 | 1905
Guangzhou
DOE / OS Titan, Cray XK7, AMD (16C) + s
2 3 Nvidia Kepler 6PU (14c) + 560,640 | 17.6 65 8.3 ||2120
Oak Ridge Nat Lab
Custom
DOE / NNSA Sequoia, BlueGene/Q (16¢)
& L Livermore Nat Lab + custom St | S e 7o | Ee
RIKEN Advanced Inst K computer Fujitsu SPARC64
4 for Comp Sci VIIIfx (8¢c) + Custom .' 705,024 10.5 93 12.7 || 827
= R YT
DOE / Os Mira, BlueGene/Q (16¢) R -
5 Argonne Nat Lab + Custom s 786,432 | 8.16 85 || 3.95 | 2066
SR,
6 DOE / NNSA / Trinity, Cray XC40,Xeon 16C + :*::‘ > i 301,056
Los Alamos & Sandia Custom .

2+ -|

: Piz Daint, Cray XC30, Xeon 8C +
7 Swiss €5CS Nvidia Kepler (14c) + Custom 2
Hazel Hen, Cray XC40, Xeon 12¢
8 HLRS Stuttgart + Custom 185,088
9 KAUST Shaheen I, cray XC30, Xeon N244d 196,608 554 @ 77| 4.5 ||1146
Texas Advanced |Stampede, Dell Intel (8c) + Infe/ .
e Computing Center Xeon Phi (61c) + IB 204,900} 5.17 2l 4.5 | R
MEGAWARE Intel Germany 10,800 .206 95

500 (368) Karlsruher
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“~ Recent Developments

¢ US DOE planning to deploy O(100) Pflop/s systems for
2017-2018 - $525M hardware

¢ Oak Ridge Lab and Lawrence Livermore Lab to receive IBM
and Nvidia based systems

¢ Argonne Lab to receive Intel based system
> After this Exaflops

¢ US Dept of Commerce is @
groups from receiving In
\cle

> Ncmonal SC Center Changs

12



Yutong Lu from NUDT at the International Supercomputer
Conference in Germany in July

status of Tianhe System

System peak(PF)
peak Power(MW)

temory
Total System Memory

13



China Accelerator 757

Matrix2000 GPDSP
7 High Performance A High Throughput
> 64bit Supported > High-bandwidth Memory
> ~2.4/4.8TFlops(DP/SP) > 32~64GB
> 1GHz, ~200W » PCIE 3.0, 16x
SNO SN1 SN2 SN3 SN4 SN5
I 10
10
IONO ION]1
SYNC SYNC SYNC SYNC SYNC SYNC SYNC SYNC
SubGC SubGC SubGC SubGC SubGC SubGC SubGC SubGC
MCU MCU MCU MCU

57 National University of Defense Technology
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China Other Machine

¢ Sunway Blue Light - Sunway BlueLight MPP, ShenWei
processor SW1600 975.00 MHz, Infiniband QDR

> Site:National Supercomputing Center in Jinan

> Cores:137,200 Linpack Performance (Rmax)795.9 TFlop/s
Theoretical Peak (Rpeak)1,070.16 TFlop/s

> Processor:ShenWei processor SW1600 16C 975MHz (Alpha arch)
» Interconnect:Infiniband QDR

¢ Rumored to have a 100 Pflop/s system

07

15



Peak Performance - Per Core

FLOPs

FLOPS = cores x clock x

Floating point operations per cycle per core

-+

-+

-+

Most of the recent computers have FMA (Fused multiple add): (i.e.
X <X + y*zin one cycle)

Intel Xeon earlier models and AMD Opteron have SSE2

+ 2 flops/cycle DP & 4 flops/cycle SP

Intel Xeon Nehalem (‘0g9) & Westmere ('10) have SSE4

+ 4 flops/cycle DP & 8 flops/cycle SP

Intel Xeon Sandy Bridge('11) & Ivy Bridge (‘22) have AVX

+ 8 flops/cycle DP & 16 flops/cycle SP =)
Intel Xeon Haswell ("13) & (Broadwell ("14)) AVX2
+ 16 flops/cycle DP & 32 flops/cycle SP

+ Xeon Phi (per core) is at 16 flops/cycle DP & 32 flops/cycle SP
Intel Xeon Skylake (server) (‘15) AVX 512
+ 32 flops/cycle DP & 64 flops/cycle SP

cycle

C
per
Name
yottaF
zettaF
exaFL
petaFl
teraFL
gigaF|
megal
kiloFL




CPU Access Latencies in Clock Cycles

L3 Cache Full Random access

L3 Cache In Page Random access
L3 Cache sequential access

L2 Cache Full Random access

L2 Cache In Page Random access
L2 Cache sequential access

L1 Cache In Full Random access
L1 Cache In Page Random access

L1 Cache sequential access

_ —

el
Main memory I 167 Cycles @

I 38
I 18

B 14
11

11

11

H4

H4

L

0 50

100
Cycles

3

Latency in Clocks - Lower is Better
& 3

150 200



¢, Classical Analysis of Algorithms
May Not be Valid

¢ Processors over provisioned for
floating point arithmetic

¢ Data movement extremely expensive

¢ Operation count is not a good
indicator of the time to solve a
problem.

¢ Algorithms that do more ops may
actually take less time. ¢ T

11/17/15
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Singular Value Decomposition

[ ] LA P A CSH
LAPACK Version 1991 :::::
LA P ACH
LAPF A
Level 1, 2, & 3 BLAS
First Stage 8/3 n3 Ops .
8o | |
““““““ ettt
S
3 etelete
3 efelete
3 etelete
3 efelete
3 etelete
3 etelete
3 efelete
+4 etelete
R R PR AR SR SRR SRR SRR R R R R % N AR R SRR SRR 3R % 3 N ¢
PR XL N
« 40
(5]
S
2 20l — |apack QR
§ - = Jlapack QR (1 core)
o — i k QR
o8 & 10| |T1pac Q
S — eispack (1 core)
:;,-)- QR refers to the QR algorithm
10 7| for computing the eigenvalues
.—’o——h_.—&o— - it g o= =0
0 — Intel Sandy Bridge 2.6 GHz

Ok 4k 8k 12 16k 20k (8 Flops per core per cycle)
columns (matrix size N x N)



Bottleneck in the Bidiagonalization

The Standard Bidiagonal Reduction: xGEBRD
Two Steps: Factor Panel & Update Tailing Matrix

r panel k then update =» factor panel k+1

Requires 2 GEMVs

* A *PH
% Characteristics +ALMPM
« Total cost 8n%/3, (reduction to bi-didg wo “emissras |, oon -
*  Too many Level 2 BLAS operations §* -
*  4/3 n3 from GEMYV and 4/3 n? from C :00 y=y+ A
* Performance limited to 2* performan 2o s ames
* =»Memory bound algorithm. ety < I

MatrixfVector Size N

16 cores Intel Sandy Bridge, 2.6 GHz, 20 MB shared L3 cache.
The theoretical peak per core double precision is 20.4 Gflop/s per core.
Compiled with icc and using MKL 2015.3.187




Recent Work on 2-Stage Algorithm

Second stage
Bulge chasing ”
To bi-diagonal ~

First stage
To band

#* Characteristics

* Stage 1:
* Fully Level 3 BLAS
* Dataflow Asynchronous execution

*  Stage 2:
* Level “BLAS-1.5”
* Asynchronous execution
* Cache friendly kernel (reduced communication)




Recent work on developing new 2-stage algorithm

Second stage
Bulge chasing "

To bi—diagona: )

First stage
To band

20
— )
40

nz = 3600

n—nb
~ ¥ a3 3 103 3
flops =~ : 2n; + (nt —s)3ng + (nt —s) 5’0 +(nt —s) x (nt—s)5n;
S—
n—nb

P 3 103 3
+ Zl 2n; + (nt —s —1)3n; + (nt —s — 1) 0y +(nt —s) X (nt —s — 1)5n;
S—=

Q

103, 10n, 2 | 2np 3
307+ 37N+ =3tn

_ 2
%n“” (gemm) gt stage flops =6 xn, xXn <gemv)sec0nd stage

Q

More Flops, original did 8/3 n 3



Recent work on developing new 2-stage algorithm

Second stage
Bulge chasing

To bi—diagona:

First stage
To band

EE——)

nz = 3600

|| ——2-stages / MKL (DGEBRD)

time of one-stage
time of two-stage

speedup =

10n3 / 3Pgemm +6ny, n? / Pgemv

84 84
— 7 < Speedup < Tz

:>18§Speedup§7 2 4 6k 8k 10k 12kMat:i‘)‘(ksize16k 18k

if Pyernm is about 22x Py, and 120 < n;, < 240.

20k

22k

24k

26k
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Parallelization of LU and QR.

“ Parallelize the update: dgemm
— * Easy and done in any reasonable software. —3
* This is the 2/3n3 term in the FLOPs count. -‘_ -I

* Can be done efficiently with LAPACK+multithreaded BLAS

\\ W/

dgetf2

I -~ Iu(I) l
A7 IR
dtrsm (+ dswp)
l l l l l Fork - Join parallelism
SR ’ ‘ ‘ ‘ ‘ Bulk Sync Processing

dgemm

-0 Q\l/y

b
I
I
I's
b
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<« Synchronization (in LAPACK LU)

» fork join
» bulk synchronous processing




i PLASMA LU Factorization

Dataflow Driven Numerical program generates tasks and
run time system executes tasks respecting

iR XTRSM data dependences.
XGEMM
w XGEMM
Sparse / Dense Matrix DAG-based factorization Batched LA

System E=) e LU, QR, or Cholesky
on small diagonal matrices

|=> ® TRSMs, QRs, or LUs

A, @9 &) @) =) < TRSMs, TRMMs

Ay, m==) © Updates (Schur complement)
GEMMs, SYRKs, TRMMs
Ay And many other BLAS/LAPACK, e.g., for application

specific solvers, preconditioners, and matrices

XGETF2
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Dataflow Based Design

¢Objectives

> High utilization of each core

> Scaling to large number of cores

> Synchronization reducing algorithms
¢ Methodology

> Dynamic DAG scheduling

> Explicit parallelism

> Implicit communication

> Fine granularity / block data layout
¢Arbitrary DAG with dynamic scheduling

DAG scheduled
parallelism

‘ a
T
@D

Fork-join parallelism
Notice the synchronization
penalty in the presence of
heterogeneity.

27




Algorithmic Bombardment

Interesting in solving a large sparse non-symmetric system
on a parallel computer.

Many algorithms to choose

UUUUU

— CG Square
— Bi CG Stabilized
— QMR

— G M RES Algorithmic bombardment for the iterative solution of linear
systems: A poly-iterative approach

Journal of Computational and Applied Mathematics 74 (1996) 91-109

— etc Richard Barrett?, Michael Berry®, Jack Dongarra®®*, Victor Eijkhout®, Charles Romine®
° * Distributed Computing Group, Los Alamos National Laboratory, Los Alamos, NM 87544, USA

® Department of Computer Science, University of Tennessee, Knoxville, TN 37996, USA
¢ Mathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831-8083, USA

Best choice not clear

Some may not converge

Develop a “poly-algorithm” combining multiple algorithms
in one, leveraging data movement.



Poly-algorithm Bombardment.
Combine three iterative

Iterating in Lock Step methods into
S multi-iterative solver.

CGS

w W Amount of work / iteration

| —> | asur | Method | a=xly |y=ax+y| y=Ax
CGS 2 6 2

Solve

MatVec

.+ 2SAXPY

Number of Communications / iteration

Solve
a= |y=ax+| y= X= Storage
CGS 2 0 2 2

A+ 6n

MatVec



Poly-algorithm Bombardment.
Combine three iterative

Iterating in Lock Step methods into
multi-iterative solver.

" CGS BICGSTAB
e Amount of work / iteration
el | Method | a=xly |[y=ax+y| y=Ax
Solve
CGS 2 6 2
ey Bi-CGSTAB 4 6 2
Inner Product
. 2 SAXPY ‘fiﬁ:y ] . . .
| Number of Communications / iteration
Solve
- W
. xTy AXx M-ly
Y A + 6n
2 SAXPY
e Bi-CGSTAB A+ 6n




Poly-algorithm
Iterating in Lock Step methods into

l CGSs BiCGSTAB

Inner Product

Solve

QMR

———> 3SAXPY ——> 2SAXPY ——> 1Solve

2 SAXPY

MatVec

Inner Product

2 SAXPY
——>  2SAXPY —)1 Norm

Solve

———> 3 SAXPY

MatVec

2 SAXPY
2 Inner Pr

Norm

———> 1 SAXPY

1 Solve

1 SAXPY
1 Solve

4 SAXPY
1 Norm

Bombardment:
Combine three iterative

multi-iterative solver.

Amount of work / iteration

| WMethod | a=x'y |y=ax+y | y=Ax_
CGS 2 6 2

Bi-CGSTAB 4 6 2
QMR 2 12 2

Number of Communications / iteration

a= |y=ax+| y= X= Storage
X'y Ax M-ly
0

A+ 6n
Bi-CGSTAB 3 0 2 2 A+ 6n

A+ 16n

0
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Algorithmic Bombardment using Multi-lterative Method

* Which is the iteration method of choice for a given problem?

« Combine three iterative solvers combined into multi-iterative solver:
Bombardment combines CGS, QMR, BiCGSTAB in one method

0
’09\'0

0.\0" =

* Target architecture: Graphics processing units (NVIDIA K40 GPU)

« Bombardment can be optimized for this architecture :

* Benefits from blocking the distinct SpMV into an SpMM
* Benefits from blocking the global reductions
* Benefits from overlapping kernels

311 Sparse matrices from the University of Florida Matrix Collection SN
* One of the solvers converges with < 5,000 iterations
* |teration limit: 100,000 iterations h\\ w
* Runtime is target metric - \

https://www.cise.ufl.edu/research/sparse/matrices/

g ch . THE UNlVERSlTY Ol’ 3
KNOXVlI.LE
A \

—— pa——L LN XA R Y
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Algorithmic Bombardment using Multi-lterative Method

Time-to-solution normalized to Bombardment time

10° T I T 3
-| & QMR 7
- v CGS ]
~| e BICGSTAB b
~| % Bombardment 7
102 — o —
o) E A “ §
.% - 4 2 } . AA ° A :
= i ° v . i
g1 e v E
'c—é - b/ ° e E
5 o ®© v ® v v % v oA ]
) 10° v :_:. A A 24 F¥a A Al “:io . o 2 A‘“ AR b 0 ¥ OAA o 240 b
$° o v A R ”l'::. \ . Y ,': v i vv _'.;’, N a . 3
- v v 2 %a ® Y& v e Qe ©
107! | | | | | | | |
50 100 150 200 250 300
Matrix ID
Stats for 311 test matrices -mz-— BICGSTAB
Fastest method: (12%) (30%) 181 (58%)
299 (96%) 262 (84%) 248 (80%)
Fails: 12 (4%) 49 (16%) 63 (20%)
Bombardment Speedup* 2.42 x 1.11 x 1.66 x

*only considering converging test cases
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Algorithmic Bombardment using Multi-lterative Method

Time-to-solution normalized to Bombardment time

103: T T T T T T 177 T T T T T T III T T T T T T III T T T T T 71T T T T T T T I:
Fl a4 QMR ]
- v CGS ]
~| o BICGSTAB 7
~| % Bombardment 7
102

Normalized runtime
8—1

§° o

: o ° ]
= wgm:zmmx R mxxx R g
E a A & A 3

C a® v 'y x vadaa a ]

L v .
10'1 1 1 1 1 11 II 1 1 1 1 11 II 1 1 1 1 11 II 1 1 1 1 11 II 1 1 1 1 ) N

107 102 107 10° 10’ 10°

Bombardment runtime [s]

Stats for 311 test matrices -mz-— BICGSTAB

Fastest method: (12%) (30%) 181 (58%)
299 (96%) 262 (84%) 248 (80%)

Fails: 12 (4%) 49 (16%) 63 (20%)

Bombardment Speedup* 2.42 x 1.11 x 1.66 x

*only considering converging test cases
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“ Avoiding Synchronization

¢ "Responsibly Reckless” Algorithms

»Try fast algorithm (unstable
algorithm) that might fail (but rarely)

»Check for instability

>If needed, recompute with stable
algorithm

35
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Avoid Pivoting; Minimize Synchronization

¢ To solve Ax = b :
> Compute A. = UTAV, with U and V random matrices
» Factorize A, without pivoting (GENP)
> Solve A.y = UT b and then Solve x = Vy

¢ U and V are Recursive Butterfly Matrices

» Randomization is cheap (O(n) operations)
» GENP is fast (can take advantage of the GPU)

> Accuracy is in practice similar to GEPP (with
iterative refinement), but...

A butterfly matrix is defined as any n-by-n matrix of the form:

1 /(R S
Think of this as a preconditioner step. B= V2 ( R -S )
Goal: Transform A into a matrix that would be sufficiently where A and S are random diagonal matrices.
‘random” so that, with a probability close to 1, pivoting is N
not needed. B= <\ \)
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< Mixed Precision Methods

» Mixed precision, use the lowest
precision required to achieve a given
accuracy outcome

= [mproves runtime, reduce power
consumption, lower data movement

= Reformulate to find correction to
solution, rather than solution; Ax rather
than x.

J(xi)

S (xi)

: )
a7 £1(x)37

Xi+1l = Xj —
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“* Idea Goes Something Like This...

« Exploit 32 bit floating point as much as
possible.
= Especially for the bulk of the computation

e Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

e Intuitively:
= Compute a 32 bit result,

= Calculate a correction to 32 bit result using
selected higher precision and,

= Perform the update of the 32 bit results with the

correction using high precision. 38



N . . . . .
~ Mixed-Precision lterative Refinement

* Iterative refinement for dense systems, Ax = b, can work this

way.
L U = lu(A) o(n’)
x = L\(U\b) o(n’)
r=>b- Ax o(n’)
WHILE || r || not small enough
z = L\(U\r) o(n?)
X=X+2 o(n")
r=b- Ax o(n’)
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.



N . . . . .
~ Mixed-Precision lterative Refinement

Iterative refinement for dense systems,

way.
L U = lu(A) SINGLE
x = L\(U\b) SINGLE
r=>b- Ax DOUBLE
WHILE || r || not small enough
z = L\(U\r) SINGLE
X=X+1z DOUBLE
r=b-Ax DOUBLE

END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt

results when using DP fl pt.

= |t can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

Ax = b, can work this

o(n’)
o(n?
o(n?)

o(n?)
o(n’)
o(n?

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision

O(n2) work is done in high precision

Problems if the matrix is ill-conditioned in sp; O(108)

40



~. Mixed precision iterative refinement

Solving general dense linear systems using mixed precision iterative refinement

1600

1400 =4SP Solve

1200
1000 -#-DP Solve

800

GFlop/s

600

400

GPU K20c (13 MP @0.7 GHz, peak 1165 GFlop/s)
200 CPU Genuine Intel (2x8 @2.60GHz, peak 333 GFlop/s)

D 5V O I O O O QO M D
X H N 9O & O O O 0 O
© SRR MR

('1/
Matrix size 41



~. Mixed precision iterative refinement

Solving general dense linear systems using mixed precision iterative refinement

1600

1400

1200

1000

800

GFlop/s

600

400

200

0

o0)
v
o
(Q\

4032

6016

8192

=#=SP Solve

-®DP Solve (MP
lter.Ref.)

-#-DP Solve

GPU K20c (13 MP @0.7 GHz, peak 1165 GFlop/s)
CPU Genuine Intel (2x8 @2.60GHz, peak 333 GFlop/s)

S o2
SoxoIo
A h h w

Matrix size

S o> oo
-~ v «

42
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“* Mixed precision iterative refinement

GFlop/s

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

Solving general dense linear systems using
mixed precision iterative refinement

- o, —
A
—--CPOSV
-=-7CPOSV
-=-7POSV
26 X
—8 - » » - B 2

2500 5000 7500

10000 12500 15000 17500 20000

Matrix size

GPU TITAN X (3,072 CUDA cores @ 1.076 GHz)
Z/C GEMM peak ~ 190 /5,600 GFlop/s; Maxwell
CPU Intel Xeon X5660@2.80GHz (2 x 6 cores)




Methods for Matrix Approximation via
Random Sampling

INPUT PARTITIONING COMPRESSION STANDARD ALGORITHMS DECOMPRESSION SOLUTION

Resulting matrix is H ¥ N

smaller and denser
I M &
B=Q'A

(A= QQ'A) B=0zv’ U=QU A= UZV’

e >

[=Jl/]

 Random sampling algorithms address the size problem by
generating much smaller approximate representations of
large matrices
— Then solved using classic linear algebra algorithms on platforms that
would not otherwise be usable for this purpose
* Deliver results that are approximate solutions.

— They are faster, easier to code, easier to map to modern computer
architectures, often more numerically robust, and display a higher
level of parallelism than traditional algorithms.



Computing rank-k approximation of A,
A=A =UV,]
plays important roles in many applications with different
constraints:
— SVD
* A=U, 2V, "to minimize | |A-A ||
» for latent semantic indexing and population clustering [SC'15]

— CX, and then Rank-Reviling QR
* A=A( )X,y and then AP =Q,R,
* with datasets from Hapmap project [SC'15]
— CUR
* A=A(:J)UA(L,:) by ACA, etc.
e Data analysis, linear solver, etc.
— Matrix completion:
* Minimize Z; ;(A(i,j)-A(i,j))* for A(i,j)#0 by ALS, SGD, etc.
* Recommendation system, missing data, etc.

— eftc.



* Different algorithms for computing approximations, e.g., for SVD
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* Increasing interests in randomized algorithms

Demand from architecture (e.g., high cost of data access)
Demand from data (e.g., processing “BigData”)
Aim to extract as much info as possible from each data access

May not work in all cases, good for low rank matrices where factorization is

overkill.
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Random sampling framework: normalized block power iteration

Generate P and @ from Q@
do
2. SpMM + Ortho
P = AQ, and
PR, = TSQR(P)
3. Restart (if not done)

Q=ATP, and
QR, = TSQR(Q)

while ‘not done’

* lterate to improve approximation

Extract SVD from projection

= XXY' with R, = PTAQ
Uk = PXk and Vk = QYk

— Sample A and AT (e.g., SpMM ) to approximate left and right singular vectors

* Block to improve convergence

— Q had k+l columns with oversampling parameter |

* “normalize” to maintain stability

— many options; e.g., different algorithms, one-sided



Random sampling framework: normalized block power iteration

* Potential to integrate different randomization/sampling schemes
— Gaussian random sampling (SpMM/GEMM with Gaussian random vector Q)
— “pruned” FFT instead of GEMM [SC’14]

— Sampling based on probabilistic distribution
(e.g., population clustering by SNP, leverage scores)

* Nice relation to “traditional algorithm”

e.g., block (CA) Lanczos for bidiagonalization [IEEE BigData workshop’14]
* |f sampling converges to desired accuracy in a couple of iterations,

it could outperform others, especially if data access is expensive

Generate P and @ from Q Extract SVD from projection
do
2. SpMM + Ortho = XXYT with R, = PTAQ
P = AQ, and Uk = PXk and Vi = QY

PR, = TSQR(P)

3. Restart (if not done)
Q=A"P, and

QR, = TSQR(Q)

while ‘not done’



Singular value distribution of an SNP matrix (TS matrix)O(100Kx500)

10,

Singular value
o

0 100 200 300 400 500
Singular value number

approximate “low-rank-plus-shift”
— Big enough gap to obtain desired low accuracy in a couple of iterations
— Small enough gap for stability (e.g., CholQR for othogonalization)

many matrices of interests seem to have such distributions



Case studies: population clustering and latent semantic indexing
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Performance studies on hybrid CPU/GPU architecture
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— Sparse truncated SVD on Tsubame Supercomputer: each node
with two six-core Intel Xeon CPUs and three NVIDIA Tesla
K20Xm GPUs

— Dense truncated RRQR on one node with two eight-core Intel
SandyBridge CPUs and three NVIDIA Tesla K40c GPUs



€. Software and Algorithm Must Keep Pace with

IcLor-

the Changes in Hardware

¢ Classical analysis of algorithms is not valid, A;ﬁ D
> # of floating point ops # computation time.

¢ Algorithms and software must take advantage by
reducing data movement.

» Need latency tolerance in our algorithms

¢ Communication and synchronization reducing
algorithms and software are critical.
» As parallelism grows

¢ Hardware presents a dynamically changing

environment
» Turbo Boost and OS jitter

¢ Many existing algorithms can’t fully exploit the
featyres of modern architecture

52



N
< Summary

* Major Challenges are ahead for extreme
computing
= Parallelism O(10%)
e Programming issues
= Hybrid
e Peak and HPL may be very misleading
 No where near close to peak for most apps

= Fault Tolerance
« Today Sequoia BG/Q node failure rate is 1.25 failures/day

= Power
« 50 Gflops/w (today at 2 Gflops/w)

* We will need completely new approaches and
technologies to reach the Exascale level



