
Performance Analysis of a Cardiac Simulation Code Using
IPM

Peter Strazdins*
Computer Systems Group,

Research School of Computer Science,

Markus Hegland,
Mathematical Sciences Institute,

The Australian National University

Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems, 14 Nov 2011

(slides available from http://cs.anu.edu.au/∼Peter.Strazdins/seminars)

http://cs.anu.edu.au/~Peter.Strazdins
http://cs.anu.edu.au/systems
http://cs.anu.edu.au
http://www.anu.edu.au
http://cs.anu.edu.au/~Peter.Strazdins/seminars

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using IPM 1

1 Overview

• the Chaste project

• modelling in Chaste

• the vayu cluster

• related work

• effect of NUMA affinity (IPM)

• benchmark configuration and methodology

• results

• scalability and hardware event count analysis; IPM insights

• conclusions and future work

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using IPM 2

2 The Chase Cardiac Simulation Project

• Chaste: software infrastructure for
modelling the electro-mechanical
properties of the heart

• large system of C++ code, many
dependencies

• required resolution necessitates
parallelization via MPI

• most computationally-intensive
part is solution of a large sparse
linear system once per timestep

• workload uses a high resolution
rabbit heart (Oxford University) (2
× 1 GB files – 4 million nodes, 24
million elements)

◭◭ ◭ • ◮ ◮◮ ×

http://www.comlab.ox.ac.uk/chaste/
http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using IPM 3

3 Cardiac Modelling in Chaste

• bi-domain equations: continuity of electrical charges within & between
heart cells

• chemical reaction kinetics describe ion transport at cell membranes

• after spatial discretisation by finite element method,

Mu
du
dt

= Ai ui − g(u, c) Mc
dc
dt

= f(u, c) Ai ui + Ae ue = 0

• ui and ue are the electric potentials (inside & outside cells) (u = ui − ue)

• c: chemical composition at the cell membranes

• g(): current across the membranes, f (): kinetics of the ion channels

• results in the following linear system




Mu 0 hAi

0 Mc 0
Ae 0 −(Ai + Ae)









uk+1

ck+1

uk+1

i



 =





Mu uk
− hg(uk, ck)

Mc c
k + hf(uk, ck)

0





• separate set of equations models the mechanical properties

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using IPM 4

4 The Vayu Cluster at the NCI National Facility

• 1492 nodes: two 2.93 GHz X5570 quad-core
Nehalems (commissioned Mar 2010)

• memory hierarchy: 32KB (per core) / 256KB
(per core) / 8MB (per socket); 24 GB RAM

• single plane QDR Infiniband: latency of 2.0µs
& 2600 MB/s (uni-) bandwidth per node

• jobs (parallel) I/O via Lustre filesystem

• jobs submitted via locally modified PBS; (by default) allocates 8 consec-
utively numbered MPI processes to each node

• typical snapshot:
1216 running jobs (465 suspended), 280 queued jobs, 11776 cpus in use

• estimating time and memory resources accurately is important!

• allocation for our work was a few thousand CPU hours, max. core count
2048 . . .

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using IPM 5

5 Related Work

• little so far on scalability of Chaste:

• parallel efficiency of 53% for 64 processors (3.0 GHz Xeon cluster) –
most time in PetSc linear solver (Pitt-Francis et al, 2009)

• 100ms of bidomain activity took 9 minutes on 2048 cores (Fujitsu,
2010)

• several recent works on using IPM (beginning with Wright et al, 2009)

• efficient performance evaluation methodologies for large-scale atmo-
sphere codes (Strazdins et, al 2011)

• after ‘warming’, first few timesteps accurately predicts future perfor-
mance

• (local version of) OpenMPI with process and NUMA affinity
• generally gives 20% better performance
• reduction in the variability of non-IO intensive benchmark from 12%

to 3% on the average error of repeated measurements

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using IPM 6

6 Effect of NUMA Affinity – Exposed by IPM Profiles

• profiling workloads already running at the limit of memory is hard!

• recent work with the Met Office UM (global atmosphere model) v7.8, no
output, 32 × 32 process grid

• no affinity: groups of 4 processes (socket 0) – spikes in compute times

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using IPM 7

7 Benchmark Configuration & Methodology

• complex build process via scons - hard to get diagnostic information!

• large number of dependencies (Python, HDF5, Parmetis, and PetSc)

• problems traced to conflicts with multiple versions installed on vayu

• used gccOpt build with g++ 4.1.2), Boost 1.38.0 and MKL 10.1.2
duration 5.0 ms
stimulation duration 0.25 ms (no delay)
timesteps 0.005 ms (ODE), 0.01 ms (PDE), 1ms (output)
KSP tolerance 1e-8 (absolute)
KSP solver default: cg with bjacobi
post-processing none

• activated an internal profiler in the GenericEventHandler class: en-
abled easy IPM profiling of the main sections

• benchmarking methodology: run each sim. 5 times, taking the minimum

• the minimal number of timesteps for accurate benchmarking (1ms
was too short - only 100 iterations)

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using IPM 8

8 Results – Scaling Behavior

• ‘t8’ is the time in seconds for 8 cores (due to memory constraints, could
not run on less)

 0.0625

 0.25

 1

 4

 16

 64

 256

 8 16 32 64 128 256 512 1024 2048

S
pe

ed
up

 (
ov

er
 8

 c
or

es
)

Number of Cores

total (t8=2143)
total (long sim)
KSp (t8=1451)

Ode (t8=281)
InMesh (t8=54)

Output (t8=2)
rest (t8=92)

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using IPM 9

9 Results – Scalability Analysis

• scalability of total time: max. 11.9 at 512 cores (from 8)

• scalability of ODE and KSp quite high; loss due to un-parallelized ‘rest’
and inversely scaling ’Output’ (using HDF5)

• execution time spent for 1024 cores

section %t %comm main MPI comments
rest 43 30 all-gather 25% time in I/O
Output 20 30 barrier high load imbalance
InMesh 19 41 broadcast
KSp 14 25 all-reduce (8b)
Ode 1 18 all-reduce (4b)
AssSys 0.8 0 slight imbalance; some I/O
AssRHS 0.5 7 waitany high load imbalance

• note: IPM dilated the time spent in the KSp section by 50% and overall
by 10%

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using IPM 10

10 Results - Hardware Event Count Analysis

• comparison of 2 solvers (counts ×109, average events per process)

KSp cores t job t total t KSP GFLOPS FLOPs L2$A cycles instr
cg 64 528 474 269 27.9 155 36 854 763
symmlq 64 549 495 292 24.7 144 38 924 688
cg 1024 222 187 21.9 54.6 8.7 2.2 122 201
symmlq 1024 194 176 19.1 62.3 8.3 2.3 101 161

• cg appears faster at 64 cores (despite more flops) but appears slightly
slower at 1024

• probably due to variability in runs - very high due to ‘Output’

• number of L2$A (estimated average cost of 4 cycles) indicates poor f.p.
speeds

• at 1024 cores, actual job times is 30–50s longer still;
only < 10s of this attributable to MPI processes startup / shutdown

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using IPM 11

11 Results: IPM Load Balance and Communication Breakdown

load imbalance for ‘Output’ MPI calls for the KSp (symmlq)
• above results fpr 1024 cores

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using IPM 12

12 Conclusions and Future Work

• working with such codes and systems is hard!

• ‘bleeding edge’ technology, variability effects, pushing memory limits,
large code systems . . .

• pre-installation of conflicting versions of dependencies was a pitfall!

• efficient & accurate performance analysis methodology

• applied to major components via internal profiler and IPM sections
• IPM was lightweight enough to be used
• some dilation, but gave some valuable insights (load imbalance, MPI

breakdowns and event count statistics)
• KSp solver not the issue at high core counts!

• future work: investigate parallelizing the ‘rest’ section

• further analysis of the ‘Output’ section – possibly system-wide opti-
mization is needed
• high variability needs also to be looked into

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using IPM 13

Acknowledgements!

• NCI NF staff: Margaret Kahn (initial setup), Judy Jenkinson, Jie Cai
(IPM)

• James Southern (FLE) – advice on benchmark configuration

• Fujitsu Laboratories Europe for supporting this work

Questons???

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

