Performance Analysis of a Cardiac Simulation Code Using
IPM

Peter Strazdins*
Computer Systems Group,
Research School of Computer Science,

Markus Hegland,
Mathematical Sciences Institute,

The Australian National University

Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems, 14 Nov 2011

(slides available from http://cs.anu.edu.au/~Peter.Strazdins/seminars)

http://cs.anu.edu.au/~Peter.Strazdins
http://cs.anu.edu.au/systems
http://cs.anu.edu.au
http://www.anu.edu.au
http://cs.anu.edu.au/~Peter.Strazdins/seminars

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using |IPM

1 Overview

e the Chaste project
e modelling in Chaste
e the vayu cluster
e related work
e effect of NUMA affinity (IPM)
e benchmark configuration and methodology
e results
e scalability and hardware event count analysis; IPM insights

e conclusions and future work

dd 4o) >

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using |IPM 2

2 The Chase Cardiac Simulation Project

e Chaste: software infrastructure for
modelling the electro-mechanical
properties of the heart

e large system of C++ code, many
dependencies

e required resolution necessitates
parallelization via MPI

e most computationally-intensive
part is solution of a large sparse
linear system once per timestep

e workload uses a high resolution
rabbit heart (Oxford University) (2
x 1 GB files — 4 million nodes, 24
million elements)

http://www.comlab.ox.ac.uk/chaste/
http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using |IPM 3

3 Cardiac Modelling in Chaste

e bi-domain equations: continuity of electrical charges within & between
heart cells

e chemical reaction kinetics describe ion transport at cell membranes

e after spatial discretisation by finite element method,
Mu%:Aiui—g(u,c) Mc%zf(u,c) Aiuw;+A.u, =0

e 1u; and u, are the electric potentials (inside & outside cells) (u = u; — u,)

e c. chemical composition at the cell membranes

e g(): current across the membranes, f(): kinetics of the ion channels

e results in the following linear system

M, 0 hA; Rl " M, u* — hg(uF, ")’
0 M. 0 | = | M.c"+ hf(uf,c)
] Ae 0 _(Az + Ae) i uf“] 0 |

e Sseparate set of equations models the mechanical properties

dd 4o) >

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using IPM 4

4 The Vayu Cluster at the NCI National Facility

e 1492 nodes: two 2.93 GHz X5570 quad-core
Nehalems (commissioned Mar 2010)

e memory hierarchy: 32KB (per core) / 256KB
(per core) / 8MB (per socket); 24 GB RAM i

e single plane QDR Infiniband: latency of 2.0us
& 2600 MB/s (uni-) bandwidth per node
e jobs (parallel) I/O via Lustre filesystem

e jobs submitted via locally modified PBS; (by default) allocates 8 consec-
utively numbered MPI processes to each node

e typical snapshot:
1216 running jobs (465 suspended), 280 queued jobs, 11776 cpus in use

e estimating time and memory resources accurately is important!

e allocation for our work was a few thousand CPU hours, max. core count
2048 ...

‘ dd4 <o P P>

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using |IPM 5

5 Related Work

e little so far on scalability of Chaste:

e parallel efficiency of 53% for 64 processors (3.0 GHz Xeon cluster) —
most time in PetSc linear solver (Pitt-Francis et al, 2009)

e 100ms of bidomain activity took 9 minutes on 2048 cores (Fujitsu,
2010)

e several recent works on using IPM (beginning with Wright et al, 2009)

e efficient performance evaluation methodologies for large-scale atmo-
sphere codes (Strazdins et, al 2011)

e after ‘warming’, first few timesteps accurately predicts future perfor-
mance
e (local version of) OpenMPI with process and NUMA affinity

generally gives 20% better performance
reduction in the variability of non-10 intensive benchmark from 12%
to 3% on the average error of repeated measurements

‘ <<<.>>>

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using |IPM 6

6 Effect of NUMA Affinity — Exposed by IPM Profiles

18 _h' —| "_1 N B computation
Communication

16 — system

wall

14 — L=er

12 —

10

time in seconds

= = =]
=3 o r o
0w~ -+ [u} o

HFI rank

Lo

e profiling workloads already running at the limit of memory is hard!

e recent work with the Met Office UM (global atmosphere model) v7.8, no
output, 32 x 32 process grid

no affinity: groups of 4 processes (socket 0) — spikes in compute times

dd 4o) >

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using |IPM 7

7 Benchmark Configuration & Methodology

e complex build process via scons - hard to get diagnostic information!
e large number of dependencies (Python, HDF5, Parmetis, and PetSc)

e problems traced to conflicts with multiple versions installed on vayu
e used gccOpt build with g++ 4.1.2), Boost 1.38.0 and MKL 10.1.2

duration 5.0 ms

stimulation duration | 0.25 ms (no delay)

timesteps 0.005 ms (ODE), 0.01 ms (PDE), 1ms (output)
KSP tolerance le-8 (absolute)

KSP solver default: cg with bj acobi

post-processing none

e activated an internal profiler in the Gener i cEvent Handl er class: en-
abled easy IPM profiling of the main sections

e benchmarking methodology: run each sim. 5 times, taking the minimum

e the minimal number of timesteps for accurate benchmarking (1ms
was too short - only 100 iterations)

AAAAAAAAAAAAAAAAAAAAAAAAAAAAA T dd4 <o) >)

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using |IPM 8

8 Results — Scaling Behavior

e ‘t8’ Is the time in seconds for 8 cores (due to memory constraints, could
not run on less)

256 . . . : , . |
total (t8=2143) @
' total (long sim) — @
64 | KSp (t8=1451) @ /./_,,.—0 |
Ode (t8=281) e
—~ - InMesh (18=54) o e
@ Output (t18=2) - @ - L
S 16 [rest(t8=92) @ - .
(e8]
o
> —
=)
Q.
>
©
GJ —
(5]
Q.
n
.‘\
0.25 r \ o o0 |

o ‘o e o |

0.0625 1 1 1 1 1 1 1
8 16 32 64 128 256 512 1024 2048

Number of Cores

A
®
THE AUSTRALIAN NATIONAL UNI << < > >>

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using |IPM 9

9 Results — Scalability Analysis

e scalability of total time: max. 11.9 at 512 cores (from 8)

e scalability of ODE and KSp quite high; loss due to un-parallelized ‘rest’
and inversely scaling 'Output’ (using HDF5)

e execution time spent for 1024 cores

section | %t | %ecomm | main MPI comments

rest 43 130 all-gather 25% time in I/O

Output |20 30 barrier high load imbalance
InMesh |19 |41 broadcast

KSp 14 25 all-reduce (8b)

Ode 1 |18 all-reduce (4Db)

AssSys 0.8/0 slight imbalance; some I/O
AssRHS |0.5]7 waitany high load imbalance

e note: IPM dilated the time spent in the KSp section by 50% and overall
by 10%

‘ <<<.>>>

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using |IPM 10

10 Results - Hardware Event Count Analysis

e comparison of 2 solvers (counts x10?, average events per process)

KSp cores |t job |t total |t KSP | GFLOPS | FLOPs | L2%$A | cycles | instr
cg 64| 528| 474| 269 27.9 155, 36| 854 763
symmiq 64| 549| 495| 292 24.7 144 38| 924 688
cg 1024 | 222 187| 21.9 54.6 8.7/ 22| 122|201
symmig| 1024| 194| 176| 19.1 62.3 8.3 23| 101 161

e Cg appears faster at 64 cores (despite more flops) but appears slightly
slower at 1024

e probably due to variability in runs - very high due to ‘Output’

e number of L2%A (estimated average cost of 4 cycles) indicates poor f.p.
speeds

e at 1024 cores, actual job times is 30-50s longer still;
only < 10s of this attributable to MPI processes startup / shutdown

‘ <<<.>>>

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using IPM 11

11 Results: IPM Load Balance and Communication Breakdown

B rPI_Allreduce
W HPI_Waitany
B rPI_Waitall
HPI_Allgather
W HPI_Start
MPI_Startall

50
40

W MPI_Conm_size
@ 3
[

10

E=3 = ra o N o = -~ =) =)

=
=1
&l

= =
= =
=+ [}

oo
200

= =3
= =3
=+ =

HPI rank HFI rank

1000
00
1000

load imbalance for ‘Output’ MPI calls for the KSp (symmilq)
e above results fpr 1024 cores

dd <o) >

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using |IPM 12

12 Conclusions and Future Work

e working with such codes and systems is hard!
e ‘Dleeding edge’ technology, variability effects, pushing memory limits,
large code systems ...
e pre-installation of conflicting versions of dependencies was a pitfall!

e efficient & accurate performance analysis methodology

e applied to major components via internal profiler and IPM sections
¢ IPM was lightweight enough to be used

e some dilation, but gave some valuable insights (load imbalance, MPI
breakdowns and event count statistics)

KSp solver not the issue at high core counts!
e future work: investigate parallelizing the ‘rest’ section

e further analysis of the ‘Output’ section — possibly system-wide opti-
mization is needed

high variability needs also to be looked into

‘ <<<.>>>

http://www.anu.edu.au

Scala, Nov 2011 Performance Analysis of a Cardiac Simulation Code Using |IPM 13

Acknowledgements!

e NCI NF staff: Margaret Kahn (initial setup), Judy Jenkinson, Jie Cai
(IPM)

e James Southern (FLE) — advice on benchmark configuration

e Fujitsu Laboratories Europe for supporting this work

Questons???

dd 4o) >

http://www.anu.edu.au

