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Predict behaviour on different system

Find bottlenecks, sweet spot, scaling problems
Easier then running on several machines
Reproducible
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Scientific and Engineering Problems

Many scientific problems revolve around:
inverting a real n by n matrix (MI)

e Given A
e Find A~!

solving a system of linear algebraic equations (SLAE)
e Given Aand b
e Solve, for x, Ax=b
e Orfind A~" and calculate x = A='b
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Traditional Methods
e Gaussian elimination
e Gauss-Jordan
o Both take O(n®) steps

Time prohibitive if:
e alarge problem
e or a real time solution is required
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Idea behind Monte Carlo Methods

Wish to estimate the quantity «

Define a random variable ¢

Where £ has the mathematical expectation o
Take N independent realisations &; of £

B N
e Thené= 1> ¢
i=1

e Andé~a
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Reason for Using Monte Carlo

O(NT) steps to find an element of the:

e matrix inverse A~

e solution vector x
where:

e N number of Markov Chains

e T length of Markov Chains
Independent of n - size of matrix or problem
Algorithms can be efficiently parallelised
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Parallel Algorithm

Matrix Setup

Use parallel Monte Carlo
to find B~

Use parallel iterative
refinement to improve
accuracy of B~
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Native vs. simulated scaling

Scaling experiments
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Core scaling
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Simulated MPI Processes.

Execution Time in Seconds

960 core system
240 cores for simulation due to memory bandwidth restrictions
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Core scaling
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Simulated MPI Processes

Recurring behaviour for increasing MPI process sizes
Scales well, then plateaus
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Problem scaling
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Linear behaviour up to 2000x2000 matrix size
Slight degradation for larger problem sizes
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MPI message count scaling

Scaling experiments
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Simulator also gathers MPI statistics
Linear increase of exchanged messages, as expected
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Outcome & Conclusions

Behaviour of code is predictable

Simulation provides valuable information
Forecast behaviour on varying systems possible
Time and resource concerns
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Future work

Improve the code and retest

Profiling + scaling simulation

Optimize program to be able to handle simulation of larger
problem sizes

Runs on larger parallel systems, different networks
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