

14 November 2011

On Non-Blocking Collectives in 3D FFTs

Dr Radhika Saksena Environment and Health Research Division Fujitsu Laboratories of Europe Ltd

shaping tomorrow with you

Copyright 2011 FUJITSU LIMITED

Non-Blocking Collectives

FUjitsu

- Non-blocking collectives: Ialltoall, Ibcast, etc. Once nonblocking operation is posted, communication progresses:
 - · Asynchronously or
 - Progress communication manually by calling MPI_Test()/NBC_Test()
- Not in MPI 2.0 library implementations but proposed in MPI 3.0 draft specification and widely expected:

http://meetings.mpi-forum.org/presentations/MPI_Forum_SC10.ppt.pdf

 Use libNBC [1] to provide non-blocking collective functions. libNBC depends on non-blocking point-to-point MPI_Isend and MPI_Irecv for implementing the collectives.

Three-Dimensional FFTs

FFTs are important for performance of a range of HPC applications

- Computational Quantum Chemistry Many small independent FFTs
- Molecular Dynamics (Materials Science and Biophysics) Small FFTs of sizes <= 512³
- CFD (DNS, spectral methods) Single large FFTs O(1000^3)

Distributed 3D FFTs

Basic Algorithm to perform distributed 3D FFT: 1D decomposition on a processor (MPI task) grid

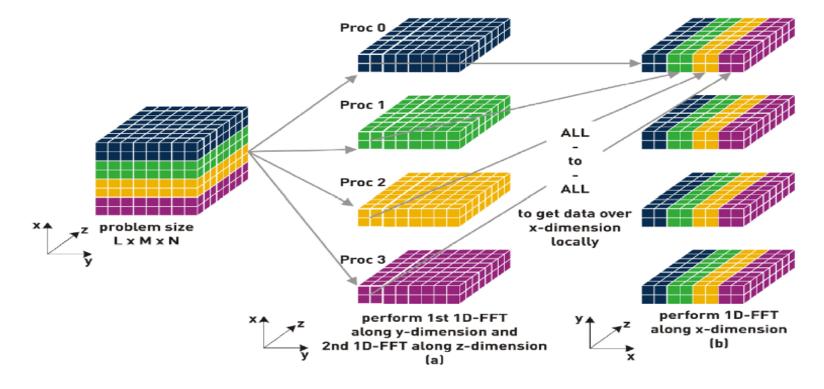


Figure 3: 1D decomposition of 3D FFT [8] Figure from: Heiki Jagode, http://www2.epcc.ed.ac.uk/msc/dissertations/dissertations-0506/hjagode.pdf.

Maximum parallel decomposition along one axis is restricted by the array size of the longest axis

Distributed 3D FFTs

2D decomposition of the MPI task grid for volumetric decomposition

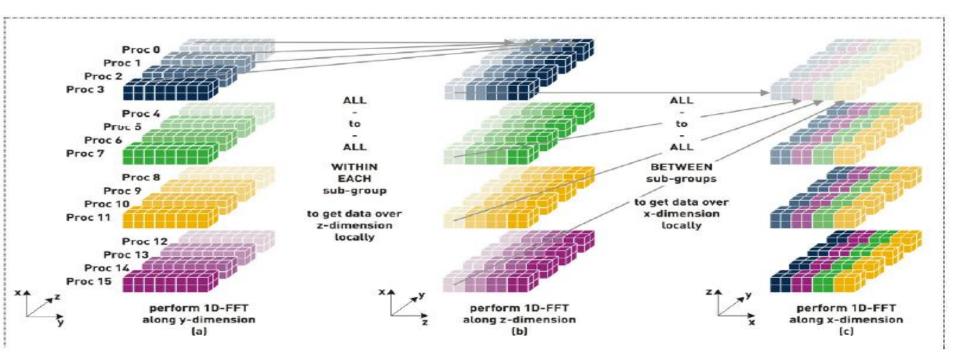


Figure 4: 2D decomposition of 3D FFT [8]. The coordinate system is rotated in each step for better clarity of the communication and datalayout.

Figure from: Heiki Jagode, http://www2.epcc.ed.ac.uk/msc/dissertations/dissertations-0506/hjagode.pdf.

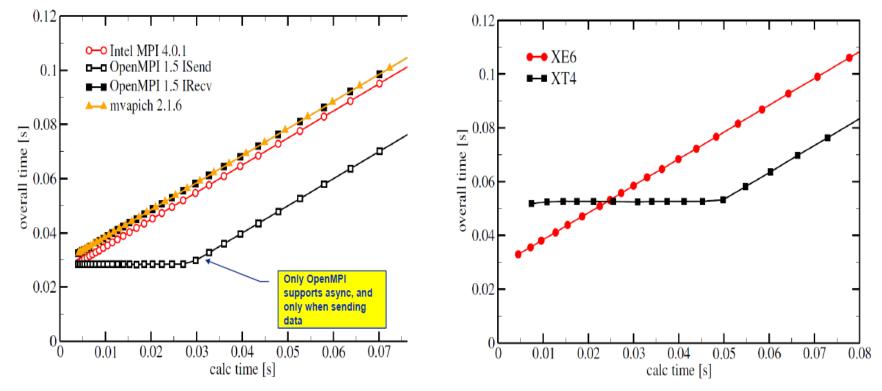
Distributed 3D FFTs

Scaling of parallel FFTs bound by the requirement for global all-to-all communications to perform the distributed transpose.

Already a bottleneck on petascale architectures – future of FFTs in an exascale era?

Some approaches to prolong the life of FFTs in postpetascale, multi-core era:

- Hybrid MPI/OpenMP or MPI/Pthreads
- Non-blocking collectives
- One-sided communication


Distributed 3D FFTs – Non-blocking Collectives

Non-blocking collectives – hybridization alone will not help communication bound apps like FFTs [Hager CUG10]

Internode results for Westmere cluster (QDR-IB)

Internode results for Cray XT4 and XE6

Will need to manually overlap communication and computation with: 1) MPI_Test() for NB collectives in MPI 3.0? 2) Explicitly assign a thread to progress communication asynchronously

Distributed 3D FFTs – Non-blocking Collectives

Non-blocking collective communication implementation by Kandalla *et al.* [5] at ISC'11 for multiple independent FFTs:

```
1D FFT in x for V<sub>1</sub>
transpose x and y of V_1
1D FFT in y for V<sub>1</sub>
Initiate transpose y and z of V_1
do V_i = V_2 to V_n
    1D FFT in x for V_j
    transpose x and y of V_i
    1D FFT in y for V_j
    Initiate transpose y and z of V_i
    Wait for transpose complete for V_{j-1}
    1D FFT in z for V_{i-1}
enddo
Wait for transpose complete for V_n
1D FFT in z for V_n
```

Fig. 3 Algorithm for the forward transform in the redesigned multivariable, pipelined, overlapped version

- Re-designed P3DFFT library to overlap the Alltoall operations with application-level computation
- Report host-based non-blocking Alltoall schemes faster by 6% compared to the default-blocking version, by 23% with offloading progression to hardware.

Distributed 3D FFTs – Non-blocking Collectives

Our approach for non-blocking collectives in a single 3D FFT:

1D FFT in the Z dimension

1D FFT in the Y dimension

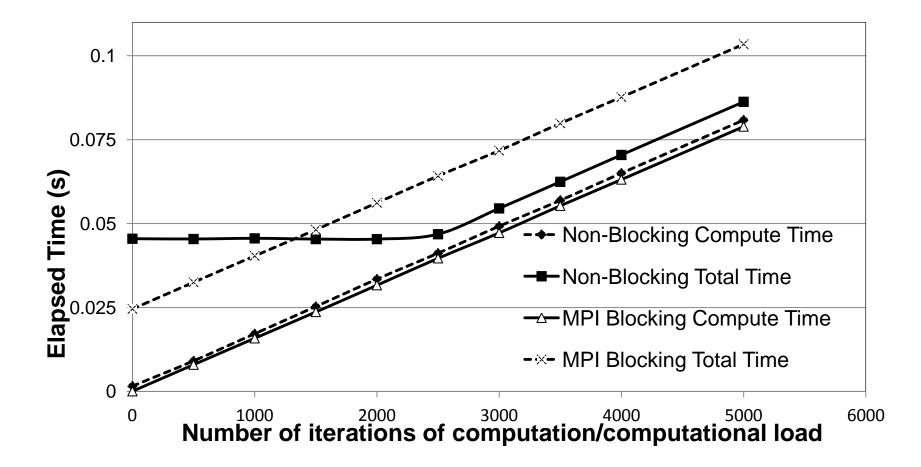
MPI_Alltoall(sendbuf,(3*size)/4, mpi_double_complex,..., recvbuf,(3*size)/4,...);

NBC_Ialltoall(sendbuf + (3*size)/4,count/4,..., recvbuf + (3*size)/4,size/4,...,handle);

1D FFT in the X dimension for data of size (3*size)/4

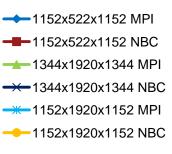
call NBC_Test(handle) regularly

NBC_Wait(handle);


1D FFT in the X dimension for data of size (size/4)

						_			
Tas	sk 1								
Tas	sk 2								
Tas	sk 3								
,					_Alltoall				
Tas	sk 1								
	sk 2								
	sk 3								
_									
Tas	sk 1								
Tas	sk 2								
	sk 3								
NBC_lalltoall									
Tas	sk 1								
Tas	sk 2								
Tas	sk 3								

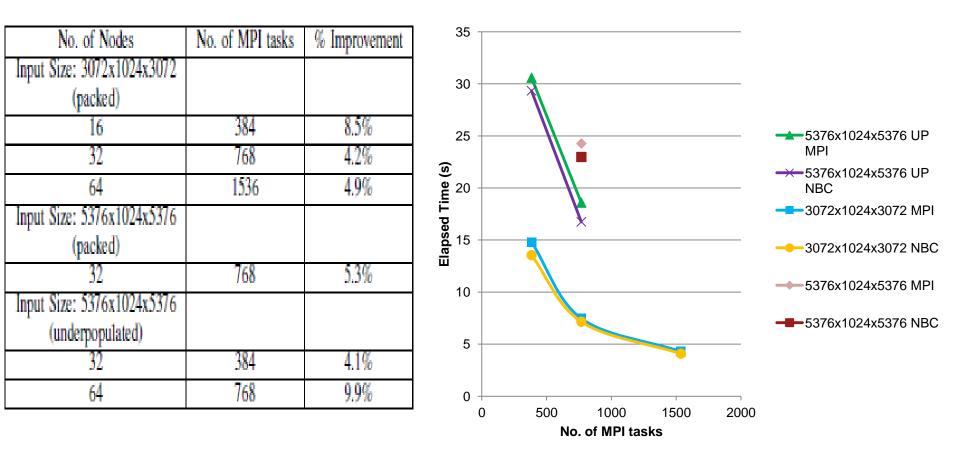
Distributed 3D FFTs - NBC Collectives


Implementation: Test of overlap of communication with computation with NBC_Ialltoall in libNBC:

Distributed 3D FFTs - NBC Collectives

Results on the BX900 Intel Westmere Cluster with OpenMPI

No. of Nodes	No. of MPI tasks	% Improvement	12	
Input Size: 1152x522x1152				
(packed)			10	
16	192	-8.2%		
8	96	1.2%		
4	48	5.2%	8 — 8	
2	24	3.0%	Elapsed Time (s)	
Input Size: 1152x1920x1152	2		6 - 6	
(packed)			Elaps	
16	192	0.2%	4	
8	96	4.3%		
4	48	5.0%	2 —	
Input Size: 1344x1920x1344	ļ			
(packed)			0	
16	192	2.8%	16	64 256
8	96	3.7%		No. of MPI tasks



FUÏTSU

Distributed 3D FFTs - NBC Collectives

Results on HECToR, Cray XE6

Future Work

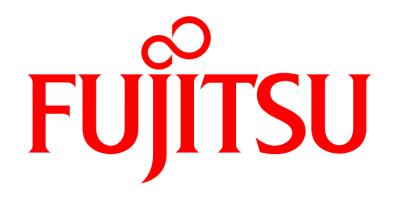
- Devise general purpose strategies for overlapping communication and computation for use in mathematical libraries.
- With availability of non-blocking collectives widely expected in MPI-3 consider auto-tuning strategies for tuning MPI_Test() calls or make algorithms resistant to this.
- Exploit hyper-dimensionality in seemingly 3D algorithms to maximize utilization of hyper-dimensional network architectures [2] as they become common. Non-blocking collectives will be important here.

–Dr Ross Nobes

-Dr Nicholas Wilson

–Professor Daisuke Takahashi, Tsukuba University

-Dr Ning Li and Dr Mark Richardson at Numerical Algorithms Group Ltd


-Dr Stephen Pickles at STFC Daresbury Laboratory, UK

-Fujitsu Laboratories of Europe, UK

References

- [1] Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI, T. Hoefler, A. Lumsdaine and E. Rehm, http://www.unixer.de/publications/img/hoefler-sc07.pdf
- [2] Tofu: A 6D Mesh/Torus Interconnect for Exascale Computers, Y. Ajima, S. Sumimoto and T. Shimizu, Computer, 42(11), pp. 36–40 (2009).
- [3] Overlapping Methods of All-to-All Communication and FFT Algorithms for Torus-connected Massively Parallel Supercomputers, J. Doi and Y. Negishi, SC10 (2010).
- [4] An implementation of parallel 3-D FFT with 2-D Decomposition on a Massively Parallel Cluster of Multi-core Processors, D. Takahashi, PPAM 2009, Part 1, LNCS 6067, pp. 606-614 (2010).
- [5] High performance and scalable non-blocking all-to-all with collective offload on Infiniband clusters: a study with parallel 3D FFT, Kandalla *et al*, Computer Science – Research and Development, **26**(3-4), 237-246 (2011).
- [6] A Hybrid MPI/OpenMP Implementation of a Parallel 3-D FFT on SMP Clusters, D. Takahashi, PPAM 2005, LNCS 3911, pp. 970-977 (2006).

shaping tomorrow with you