Scalable and Fault Tolerant Orthogonalization Based on Randomized Aggregation

W. N. Gansterer, G. Niederbrucker, H. Strakova and S. Schulze Grotthoff

Research Lab Computational Technologies and Applications Research Group Theory and Applications of Algorithms University of Vienna, Austria

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Objective

(ロ) (同) (三) (三) (三) (三) (○) (○)

Distributed algorithms for matrix computations

- Decentralized
- Nodes operate (mostly) with local information
- Nodes do not need to be synchronized
- Automatically adapt to arbitrary topologies (incl. changes during runtime)
- ⇒ Less synchronization, less global information than classical parallel algorithms
- ⇒ Dynamically changing communication schedules

Which potential do they have in terms of

- Scalability with system size ?
- Resilience ?

Building Block

(日) (日) (日) (日) (日) (日) (日)

Distributed Data Aggreggation Algorithms (DDAAs)

- Reduction operations (summation, averaging, etc.)
- Based on (randomized) gossiping protocols:

1: **loop** (in node *k*)

- 2: send data to randomly chosen neighbor
- 3: if received data \Rightarrow update local data

4: end loop

• Well established in distributed systems, sensor networks, telecommunications, etc.

Basic Approach

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Three levels:

- DDAAs
- Distributed BLAS operations
- Matrix computations

Case study in this talk: orthogonalization / QR decomposition

Outline

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction

Distributed Data Aggregation Existing Methods Resilience The Push-Flow Algorithm Numerical Experiments

- 3 Robust Distributed mGS
- 4 Discussion
- 5 Conclusions and Outlook

Existing Methods

Push-sum

[Kempe et al. 2003]

- Send half of the local value x_i to a randomly chosen node
- Update a weight w_i such that x_i/w_i is the local estimate
- Guaranteed to converge linearly to sum or average

LiMoSense

[Eyal et al. 2011]

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Push-sum + history

Existing Methods

(ロ) (同) (三) (三) (三) (三) (○) (○)

Flow updating

[Jesus et al. 2009]

- Maintain a *flow variable* for each communication link
- Local value is added to the flow variable and then the flow variable is sent to randomly chosen node
- Receiver updates its own flow variable with the negated received flow
- ⇒ Without failures, sum of flows is zero (*flow conservation*, cf. network flow algorithms)
 - Recovering from a failure corresponds to (re)establishing flow conservation
 - Local estimate = subtract the sum of flows maintained from initial value, then average with all local estimates of neighbors
 - Convergence (speed) not formally analyzed (appears slow)

Failure Types

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- (F1) Reported temporary unavailability of nodes/links
- (F2) Unreported loss or corruption of a message
- (F3) Reported permanent node/link failures
- (F4) Unreported corruption of data (e.g., bit flip)
- (F5) Unreported permanent node failures

Resilience Properties of DDAAs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

	Push-sum	LiMoSense	Flow updating
(F1)			
(F2)			
(F3)			
(F4)		—	
(F5)	—		—

The Push-Flow Algorithm

Note:

Flow-based approach can also recover from purely local failures of a node (F4)

\Rightarrow ldea:

• Integrate the flow concept into push-sum !

Benefits:

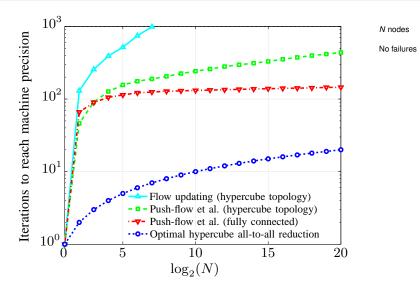
- Convergence properties of push-sum
- Improved resilience due to flow concept

The Push-Flow Algorithm

- 1: initialize: $v_i \leftarrow (x_i, 1), f_{i,j} \leftarrow (0, 0)$
- 2: for all received pairs $f_{j,i}$ do
- 3: $f_{i,j} \leftarrow -f_{j,i}$
- 4: end for
- 5: choose a random neighbor $k \in \mathscr{G}_i$
- 6: update the flow to node k: $f_{i,k} \leftarrow f_{i,k} + (v_i \sum_{j \in \mathscr{G}_i} f_{i,j})/2$
- 7: send $f_{i,k}$ to node k

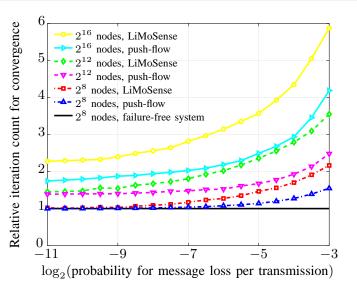
 \mathcal{G}_i denotes node *i*'s neighborhood

Scaling Behavior



◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへで

Scaling Behavior



2⁸ – 2¹⁶ nodes Hypercube Varying failure rate

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 = の々で

Outline

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

1 Introduction

- 2 Distributed Data Aggregation
- 3 Robust Distributed mGS The Algorithm Numerical Experiments

4 Discussion

5 Conclusions and Outlook

Input: $A \in \mathbb{R}^{n \times m}$ (for simplified illustration n=N) **Output:** $Q \in \mathbb{R}^{n \times m}$, $R \in \mathbb{R}^{m \times m}$ 1: **for** *i* = 1 **to** *m* **do** (in node *k*) 2: $x(k) = A(k, i)^2$ 3: 4: $s = \sum_{l=1}^{n} x(l)$ 5: $R(i,i) = \sqrt{s}$ 6: 7: Q(k,i) = A(k,i)/R(i,i)8: 9: 10: for j = i + 1 to m do 11: 12: x(k) = Q(k,i)A(k,j)13: $R(i,j) = \sum_{l=1}^{n} x(l)$ 14: 15: A(k,j) = A(k,j) - Q(k,i)R(i,j)16: 17: 18: end for 19: end for

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

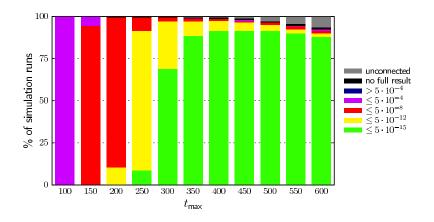
Input: $A \in \mathbb{R}^{n \times m}$ (for simplified illustration n=N) **Output:** $Q \in \mathbb{R}^{n \times m}$, $R \in \mathbb{R}^{m \times m}$ 1: **for** *i* = 1 **to** *m* **do** (in node *k*) 2: $x(k) = A(k, i)^2$ 3: 4: $s_k = DDAA(x)$ 5: $R_{k}(i,i) = \sqrt{S_{k}}$ 6: 7: $Q(k,i) = A(k,i)/R_{k}(i,i)$ 8: 9: 10: for j = i + 1 to m do 11: 12: x(k) = Q(k,i)A(k,j)13: $R_{k}(i,j) = DDAA(x)$ 14: 15: $A(k,j) = A(k,j) - Q(k,i)R_{k}(i,j)$ 16: 17: 18: end for 19: end for

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Input: $A \in \mathbb{R}^{n \times m}$ (for simplified illustration n=N) **Output:** $Q \in \mathbb{R}^{n \times m}, R \in \mathbb{R}^{m \times m}$ 1: for i = 1 to m do (in node k) ... check for node failures, update P_k and B_k ... 2: $x(k) = \sum_{p \in P_k} A(p, i)^2$ 3: 4: $s_k = DDAA(x)$ 5: $R_{k}(i,i) = \sqrt{S_{k}}$ for each $p \in P_k$ 6: 7: $Q(\mathbf{p},i) = A(\mathbf{p},i)/R_{\mathbf{k}}(i,i)$ for each $b \in B_k$ 8: 9: $Q(\mathbf{b}, i) = A(\mathbf{b}, i)/R_{\mathbf{k}}(i, i)$ for i = i + 1 to m do 10: ... check for node failures, update P_k and B_k ... 11: $x(k) = \sum_{p \in P_k} Q(p, i) A(p, j)$ 12: $R_{k}(i,j) = DDAA(x)$ 13: 14: for each $p \in P_k$ $A(p,i) = A(p,i) - Q(p,i)R_{k}(i,i)$ 15: for each $b \in B_k$ 16: $A(\mathbf{b},j) = A(\mathbf{b},j) - Q(\mathbf{b},i)R_{\mathbf{k}}(i,j)$ 17: 18: end for 19: end for

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Factorization Error of rdmGS



5D hypercube, $\lambda = 12$ [s], 200 simulation runs On average, 5.82 nodes failed per simulation run (min = 0, max = 17)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Node Failures in Simulation

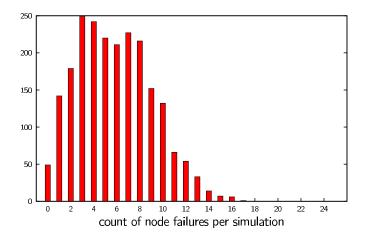


Figure: Number of node failures per simulation for $\lambda = 12[s]$ and h = 5 over all t_{max} . Average of 5.82 node failures over all simulations

Node Failures in Simulation

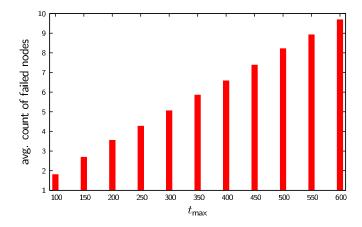
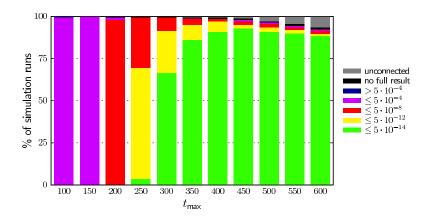


Figure: Average number of node failures per simulation for $\lambda = 12[s]$ and h = 5 and varying t_{max} . Average of 5.82 node failures over all simulations

Orthogonality of rdmGS



5D hypercube, $\lambda = 12$ [s], 200 simulation runs On average, 5.82 nodes failed per simulation run (min = 0, max = 17)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Outline

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

1 Introduction

- 2 Distributed Data Aggregation
- 3 Robust Distributed mGS

Discussion Alternative Approaches to Resilience

General Remarks

(ロ) (同) (三) (三) (三) (三) (○) (○)

Influence of the context

Performance (comparison) of various approaches strongly depends on various context parameters !

- Topology
- Routing information (beyond local neighborhood)
- Properties of the failure distribution(s): MTBF, MTTR, etc.
- Properties of the application: ratio of application runtime to checkpointing interval, etc.

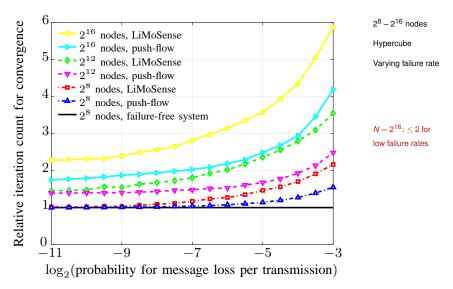
• ...

Checkpointing & Restarting

(ロ) (同) (三) (三) (三) (三) (○) (○)

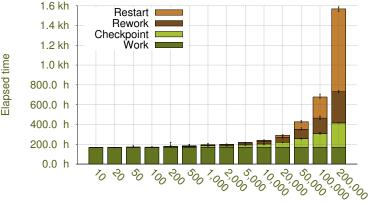
- Overhead in terms of time and storage
- Often assumes restart of the application on the same number of nodes
- Coordinated vs. uncoordinated
- Stable common storage vs. distributed storage

Overhead of DDAAs



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Overhead of Coordinated Checkpointing



Number of nodes

ъ

Wall clock times for an application based on coordinated checkpointing for increasing number of nodes Source: [Varela, Ferreira and Riesen; 2010]

Redundant computing

e.g., [Engelmann et al. 2009, Ferreira et al. 2008]

- Spare nodes are usually required (avoid imbalance)
 ⇒ large hardware overhead
- rdmGS integrates redundant computing and (reactive) migration concepts without extra hardware

Algorithm-based fault tolerance (ABFT)

e.g., [Huang & Abraham 1984, Chen & Dongarra 2008, Chen 2011]

- Extend input by checksums, detect and recover from errors
- Usually at a higher level than elementary data aggregation
- Deterministic correction vs. randomized "healing"
- Communication overhead vs. slow-down of convergence
- \rightarrow Could complement each other?

Conclusions and Outlook

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Current status

- DDAAs: "self-healing" methods
 - \rightarrow Lower overhead
 - \rightarrow Scale asymptotically like parallel reduction
 - ightarrow Failures slow down convergence
- rdMGS: redundancy on top of DDAAs
- Concept has potential
- Details depend strongly on context parameters
- Performance penalty in practice to be investigated

Conclusions and Outlook

(ロ) (同) (三) (三) (三) (三) (○) (○)

Central questions

- Runtime performance comparison?
- Depends on
 - Topology
 - Failure rates (ratio to total runtime)
 - (Granularity and structure of) Application
 - Checkpointing interval (ratio to total runtime of application)
 - ...

Work in progress

- Quantitative performance evaluation and comparison
- Convergence acceleration
 - The more global information (topology, routing, etc.) you can utilize, the faster you can make it !

Thank you for your attention !

http://rlcta.univie.ac.at