
Scalable and Fault Tolerant Orthogonalization
Based on Randomized Aggregation

W. N. Gansterer, G. Niederbrucker, H. Strakova
and S. Schulze Grotthoff

Research Lab Computational Technologies and Applications
Research Group Theory and Applications of Algorithms

University of Vienna, Austria

Objective

Distributed algorithms for matrix computations

• Decentralized
• Nodes operate (mostly) with local information
• Nodes do not need to be synchronized
• Automatically adapt to arbitrary topologies

(incl. changes during runtime)
⇒ Less synchronization, less global information

than classical parallel algorithms
⇒ Dynamically changing communication schedules

Which potential do they have in terms of

• Scalability with system size ?
• Resilience ?

Building Block

Distributed Data Aggreggation Algorithms (DDAAs)

• Reduction operations (summation, averaging, etc.)
• Based on (randomized) gossiping protocols:

1: loop (in node k)
2: send data to randomly chosen neighbor
3: if received data⇒ update local data
4: end loop

• Well established in distributed systems, sensor networks,
telecommunications, etc.

Basic Approach

Three levels:

• DDAAs

• Distributed BLAS operations

• Matrix computations

Case study in this talk: orthogonalization / QR decomposition

Outline

1 Introduction

2 Distributed Data Aggregation
Existing Methods
Resilience
The Push-Flow Algorithm
Numerical Experiments

3 Robust Distributed mGS

4 Discussion

5 Conclusions and Outlook

Existing Methods

Push-sum [Kempe et al. 2003]

• Send half of the local value xi to a randomly chosen node

• Update a weight wi such that xi/wi is the local estimate

• Guaranteed to converge linearly to sum or average

LiMoSense [Eyal et al. 2011]

• Push-sum + history

Existing Methods

Flow updating [Jesus et al. 2009]

• Maintain a flow variable for each communication link
• Local value is added to the flow variable and then the flow

variable is sent to randomly chosen node
• Receiver updates its own flow variable with the negated

received flow
⇒ Without failures, sum of flows is zero (flow conservation,

cf. network flow algorithms)
• Recovering from a failure corresponds to (re)establishing

flow conservation
• Local estimate = subtract the sum of flows maintained from

initial value, then average with all local estimates of
neighbors

• Convergence (speed) not formally analyzed (appears slow)

Failure Types

(F1) Reported temporary unavailability of nodes/links

(F2) Unreported loss or corruption of a message

(F3) Reported permanent node/link failures

(F4) Unreported corruption of data (e. g., bit flip)

(F5) Unreported permanent node failures

Resilience Properties of DDAAs

Push-sum LiMoSense Flow updating
(F1)

√ √ √

(F2) —
√ √

(F3) —
√ √

(F4) — —
√

(F5) — — —

The Push-Flow Algorithm

Note:
Flow-based approach can also recover
from purely local failures of a node (F4)

⇒ Idea:

• Integrate the flow concept into push-sum !

Benefits:
• Convergence properties of push-sum
• Improved resilience due to flow concept

The Push-Flow Algorithm

1: initialize: vi ← (xi ,1), fi ,j ← (0,0)
2: for all received pairs fj ,i do
3: fi ,j ←−fj ,i
4: end for
5: choose a random neighbor k ∈ Gi

6: update the flow to node k : fi ,k ← fi ,k +
(
vi −∑j∈Gi

fi ,j
)
/2

7: send fi ,k to node k

Gi denotes node i ’s neighborhood

Scaling Behavior

0 5 10 15 20

Flow updating (hypercube topology)
Push-flow et al. (hypercube topology)
Push-flow et al. (fully connected)
Optimal hypercube all-to-all reduction

log2(N)

103

102

101

100Ite
ra

tio
ns

to
re

ac
h

m
ac

hi
ne

pr
ec

is
io

n

N nodes

No failures

Scaling Behavior

−11 −9 −7 −5 −3

216 nodes, LiMoSense
216 nodes, push-flow
212 nodes, LiMoSense
212 nodes, push-flow
28 nodes, LiMoSense
28 nodes, push-flow
28 nodes, failure-free system

log2(probability for message loss per transmission)

6

5

4

3

2

1

0R
el

at
iv

e
ite

ra
tio

n
co

un
t

fo
r

co
nv

er
ge

nc
e

28 – 216 nodes
Hypercube
Varying failure rate

F run also for 218 = 262144 nodes! F

Outline

1 Introduction

2 Distributed Data Aggregation

3 Robust Distributed mGS
The Algorithm
Numerical Experiments

4 Discussion

5 Conclusions and Outlook

Input: A ∈ Rn×m (for simplified illustration n=N)
Output: Q ∈ Rn×m, R ∈ Rm×m

1: for i = 1 to m do (in node k)
2:

3: x(k) = A(k , i)2

4: s = ∑
n
l=1 x(l)

5: R(i , i) =
√

s
6:

7: Q(k , i) = A(k , i)/R(i , i)
8:

9:

10: for j = i +1 to m do
11:

12: x(k) = Q(k , i)A(k , j)
13: R(i , j) = ∑

n
l=1 x(l)

14:

15: A(k , j) = A(k , j) − Q(k , i)R(i , j)
16:

17:

18: end for
19: end for

Input: A ∈ Rn×m (for simplified illustration n=N)
Output: Q ∈ Rn×m, R ∈ Rm×m

1: for i = 1 to m do (in node k)
2:

3: x(k) = A(k , i)2

4: s k = DDAA(x)
5: R k (i , i) =

√
s k

6:

7: Q(k , i) = A(k , i)/R k (i , i)
8:

9:

10: for j = i +1 to m do
11:

12: x(k) = Q(k , i)A(k , j)
13: R k (i , j) = DDAA(x)
14:

15: A(k , j) = A(k , j) − Q(k , i)R k (i , j)
16:

17:

18: end for
19: end for

Input: A ∈ Rn×m (for simplified illustration n=N)
Output: Q ∈ Rn×m, R ∈ Rm×m

1: for i = 1 to m do (in node k)
2: . . . check for node failures, update Pk and Bk . . .
3: x(k) = ∑p∈Pk

A(p, i)2

4: s k = DDAA(x)
5: R k (i , i) =

√
s k

6: for each p ∈ Pk

7: Q(p, i) = A(p, i)/R k (i , i)
8: for each b ∈ Bk

9: Q(b, i) = A(b, i)/R k (i , i)
10: for j = i +1 to m do
11: . . . check for node failures, update Pk and Bk . . .
12: x(k) = ∑p∈Pk

Q(p, i)A(p, j)
13: R k (i , j) = DDAA(x)
14: for each p ∈ Pk

15: A(p, j) = A(p, j) − Q(p, i)R k (i , j)
16: for each b ∈ Bk

17: A(b, j) = A(b, j) − Q(b, i)R k (i , j)
18: end for
19: end for

Factorization Error of rdmGS

5D hypercube, λ = 12 [s], 200 simulation runs
On average, 5.82 nodes failed per simulation run (min = 0, max = 17)

Node Failures in Simulation

Figure: Number of node failures per simulation for λ = 12[s] and
h = 5 over all tmax. Average of 5.82 node failures over all simulations

Node Failures in Simulation

Figure: Average number of node failures per simulation for λ = 12[s]
and h = 5 and varying tmax. Average of 5.82 node failures over all
simulations

Orthogonality of rdmGS

5D hypercube, λ = 12 [s], 200 simulation runs
On average, 5.82 nodes failed per simulation run (min = 0, max = 17)

Outline

1 Introduction

2 Distributed Data Aggregation

3 Robust Distributed mGS

4 Discussion
Alternative Approaches to Resilience

5 Conclusions and Outlook

General Remarks

Influence of the context
Performance (comparison) of various approaches
strongly depends on various context parameters !

• Topology

• Routing information (beyond local neighborhood)

• Properties of the failure distribution(s):
MTBF, MTTR, etc.

• Properties of the application:
ratio of application runtime to checkpointing interval, etc.

• . . .

Checkpointing & Restarting

• Overhead in terms of time and storage

• Often assumes restart of the application

on the same number of nodes

• Coordinated vs. uncoordinated

• Stable common storage vs. distributed storage

Overhead of DDAAs

−11 −9 −7 −5 −3

216 nodes, LiMoSense
216 nodes, push-flow
212 nodes, LiMoSense
212 nodes, push-flow
28 nodes, LiMoSense
28 nodes, push-flow
28 nodes, failure-free system

log2(probability for message loss per transmission)

6

5

4

3

2

1

0R
el

at
iv

e
ite

ra
tio

n
co

un
t

fo
r

co
nv

er
ge

nc
e

28 – 216 nodes

Hypercube

Varying failure rate

N = 216: ≤ 2 for

low failure rates

Overhead of Coordinated Checkpointing

E
la

p
s
e

d
 t

im
e

Number of nodes

Work
Checkpoint

Rework
Restart

0.0 h

200.0 h

400.0 h

600.0 h

800.0 h

1.0 kh

1.2 kh

1.4 kh

1.6 kh

10 20 50 100
200

500
1,000

2,000

5,000

10,000

20,000

50,000

100,000

200,000

Wall clock times for an application based on coordinated
checkpointing for increasing number of nodes
Source: [Varela, Ferreira and Riesen; 2010]

Other Approaches

Redundant computing
e.g., [Engelmann et al. 2009, Ferreira et al. 2008]

• Spare nodes are usually required (avoid imbalance)
⇒ large hardware overhead

• rdmGS integrates redundant computing and (reactive)
migration concepts without extra hardware

Algorithm-based fault tolerance (ABFT)
e.g., [Huang & Abraham 1984, Chen & Dongarra 2008, Chen 2011]

• Extend input by checksums, detect and recover from errors
• Usually at a higher level than elementary data aggregation
• Deterministic correction vs. randomized “healing”
• Communication overhead vs. slow-down of convergence
→ Could complement each other ?

Conclusions and Outlook

Current status

• DDAAs: “self-healing” methods
→ Lower overhead
→ Scale asymptotically like parallel reduction
→ Failures slow down convergence

• rdMGS: redundancy on top of DDAAs

• Concept has potential

• Details depend strongly on context parameters

• Performance penalty in practice to be investigated

Conclusions and Outlook

Central questions

• Runtime performance comparison ?
• Depends on

• Topology
• Failure rates (ratio to total runtime)
• (Granularity and structure of) Application
• Checkpointing interval (ratio to total runtime of application)
• . . .

Work in progress

• Quantitative performance evaluation and comparison
• Convergence acceleration

• The more global information (topology, routing, etc.) you
can utilize, the faster you can make it !

Thank you for your attention !

http://rlcta.univie.ac.at

http://rlcta.univie.ac.at

	Introduction
	Distributed Data Aggregation
	Existing Methods
	Resilience
	The Push-Flow Algorithm
	Numerical Experiments

	Robust Distributed mGS
	The Algorithm
	Numerical Experiments

	Discussion
	Alternative Approaches to Resilience

	Conclusions and Outlook

