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Objective

Distributed algorithms for matrix computations

• Decentralized
• Nodes operate (mostly) with local information
• Nodes do not need to be synchronized
• Automatically adapt to arbitrary topologies

(incl. changes during runtime)
⇒ Less synchronization, less global information

than classical parallel algorithms
⇒ Dynamically changing communication schedules

Which potential do they have in terms of

• Scalability with system size ?
• Resilience ?



Building Block

Distributed Data Aggreggation Algorithms (DDAAs)

• Reduction operations (summation, averaging, etc.)
• Based on (randomized) gossiping protocols:

1: loop (in node k )
2: send data to randomly chosen neighbor
3: if received data⇒ update local data
4: end loop

• Well established in distributed systems, sensor networks,
telecommunications, etc.



Basic Approach

Three levels:

• DDAAs

• Distributed BLAS operations

• Matrix computations

Case study in this talk: orthogonalization / QR decomposition
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Existing Methods

Push-sum [Kempe et al. 2003]

• Send half of the local value xi to a randomly chosen node

• Update a weight wi such that xi/wi is the local estimate

• Guaranteed to converge linearly to sum or average

LiMoSense [Eyal et al. 2011]

• Push-sum + history



Existing Methods

Flow updating [Jesus et al. 2009]

• Maintain a flow variable for each communication link
• Local value is added to the flow variable and then the flow

variable is sent to randomly chosen node
• Receiver updates its own flow variable with the negated

received flow
⇒ Without failures, sum of flows is zero (flow conservation,

cf. network flow algorithms)
• Recovering from a failure corresponds to (re)establishing

flow conservation
• Local estimate = subtract the sum of flows maintained from

initial value, then average with all local estimates of
neighbors

• Convergence (speed) not formally analyzed (appears slow)



Failure Types

(F1) Reported temporary unavailability of nodes/links

(F2) Unreported loss or corruption of a message

(F3) Reported permanent node/link failures

(F4) Unreported corruption of data (e. g., bit flip)

(F5) Unreported permanent node failures



Resilience Properties of DDAAs

Push-sum LiMoSense Flow updating
(F1)

√ √ √

(F2) —
√ √

(F3) —
√ √

(F4) — —
√

(F5) — — —



The Push-Flow Algorithm

Note:
Flow-based approach can also recover
from purely local failures of a node (F4)

⇒ Idea:

• Integrate the flow concept into push-sum !

Benefits:
• Convergence properties of push-sum
• Improved resilience due to flow concept



The Push-Flow Algorithm

1: initialize: vi ← (xi ,1), fi ,j ← (0,0)
2: for all received pairs fj ,i do
3: fi ,j ←−fj ,i
4: end for
5: choose a random neighbor k ∈ Gi

6: update the flow to node k : fi ,k ← fi ,k +
(
vi −∑j∈Gi

fi ,j
)
/2

7: send fi ,k to node k

Gi denotes node i ’s neighborhood



Scaling Behavior
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Scaling Behavior
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Input: A ∈ Rn×m (for simplified illustration n=N)
Output: Q ∈ Rn×m, R ∈ Rm×m

1: for i = 1 to m do (in node k )
2:

3: x(k) = A(k , i)2

4: s = ∑
n
l=1 x(l)

5: R(i , i) =
√

s
6:

7: Q(k , i) = A(k , i)/R(i , i)
8:

9:

10: for j = i +1 to m do
11:

12: x(k) = Q(k , i)A(k , j)
13: R(i , j) = ∑

n
l=1 x(l)

14:

15: A(k , j) = A(k , j) − Q(k , i)R(i , j)
16:

17:

18: end for
19: end for



Input: A ∈ Rn×m (for simplified illustration n=N)
Output: Q ∈ Rn×m, R ∈ Rm×m

1: for i = 1 to m do (in node k )
2:

3: x(k) = A(k , i)2

4: s k = DDAA(x)
5: R k (i , i) =

√
s k

6:

7: Q(k , i) = A(k , i)/R k (i , i)
8:

9:

10: for j = i +1 to m do
11:

12: x(k) = Q(k , i)A(k , j)
13: R k (i , j) = DDAA(x)
14:

15: A(k , j) = A(k , j) − Q(k , i)R k (i , j)
16:

17:

18: end for
19: end for



Input: A ∈ Rn×m (for simplified illustration n=N)
Output: Q ∈ Rn×m, R ∈ Rm×m

1: for i = 1 to m do (in node k )
2: . . . check for node failures, update Pk and Bk . . .
3: x(k) = ∑p∈Pk

A(p, i)2

4: s k = DDAA(x)
5: R k (i , i) =

√
s k

6: for each p ∈ Pk

7: Q(p, i) = A(p, i)/R k (i , i)
8: for each b ∈ Bk

9: Q(b, i) = A(b, i)/R k (i , i)
10: for j = i +1 to m do
11: . . . check for node failures, update Pk and Bk . . .
12: x(k) = ∑p∈Pk

Q(p, i)A(p, j)
13: R k (i , j) = DDAA(x)
14: for each p ∈ Pk

15: A(p, j) = A(p, j) − Q(p, i)R k (i , j)
16: for each b ∈ Bk

17: A(b, j) = A(b, j) − Q(b, i)R k (i , j)
18: end for
19: end for



Factorization Error of rdmGS

5D hypercube, λ = 12 [s], 200 simulation runs
On average, 5.82 nodes failed per simulation run (min = 0, max = 17)



Node Failures in Simulation

Figure: Number of node failures per simulation for λ = 12[s] and
h = 5 over all tmax. Average of 5.82 node failures over all simulations



Node Failures in Simulation

Figure: Average number of node failures per simulation for λ = 12[s]
and h = 5 and varying tmax. Average of 5.82 node failures over all
simulations



Orthogonality of rdmGS

5D hypercube, λ = 12 [s], 200 simulation runs
On average, 5.82 nodes failed per simulation run (min = 0, max = 17)
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General Remarks

Influence of the context
Performance (comparison) of various approaches
strongly depends on various context parameters !

• Topology

• Routing information (beyond local neighborhood)

• Properties of the failure distribution(s):
MTBF, MTTR, etc.

• Properties of the application:
ratio of application runtime to checkpointing interval, etc.

• . . .



Checkpointing & Restarting

• Overhead in terms of time and storage

• Often assumes restart of the application

on the same number of nodes

• Coordinated vs. uncoordinated

• Stable common storage vs. distributed storage



Overhead of DDAAs
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Overhead of Coordinated Checkpointing
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Other Approaches

Redundant computing
e.g., [Engelmann et al. 2009, Ferreira et al. 2008]

• Spare nodes are usually required (avoid imbalance)
⇒ large hardware overhead

• rdmGS integrates redundant computing and (reactive)
migration concepts without extra hardware

Algorithm-based fault tolerance (ABFT)
e.g., [Huang & Abraham 1984, Chen & Dongarra 2008, Chen 2011]

• Extend input by checksums, detect and recover from errors
• Usually at a higher level than elementary data aggregation
• Deterministic correction vs. randomized “healing”
• Communication overhead vs. slow-down of convergence
→ Could complement each other ?



Conclusions and Outlook

Current status

• DDAAs: “self-healing” methods
→ Lower overhead
→ Scale asymptotically like parallel reduction
→ Failures slow down convergence

• rdMGS: redundancy on top of DDAAs

• Concept has potential

• Details depend strongly on context parameters

• Performance penalty in practice to be investigated



Conclusions and Outlook

Central questions

• Runtime performance comparison ?
• Depends on

• Topology
• Failure rates (ratio to total runtime)
• (Granularity and structure of) Application
• Checkpointing interval (ratio to total runtime of application)
• . . .

Work in progress

• Quantitative performance evaluation and comparison
• Convergence acceleration

• The more global information (topology, routing, etc.) you
can utilize, the faster you can make it !



Thank you for your attention !

http://rlcta.univie.ac.at

http://rlcta.univie.ac.at
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