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LANL HPC Platforms and Users 

  Capability and capacity systems at LANL, Lawrence Livermore National 
Laboratory, and Sandia National Laboratory are available to LANL 
scientists 

  Used for large scientific calculations: 
•  Capability: large calculations (4k-20k processes) that run for weeks to months 
•  Capacity: small/medium calculations (10-40k processes) that can run for days 

  Some HPC platforms are at the cutting edge in terms of scale/technology 
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Soft Errors & HPC Platforms 
  Soft Error:  An unintended change in the state of an electronic device that alters the 

information that it stores without destroying its functionality, e.g. a bit flip caused by a 
cosmic-ray-induced neutron.  (Hengartner et al., 2008) 

  LANL Experience:  ASC Q Supercomputer (2nd fastest: June 2003) 
•  More single-node (CPU) failures than predicted 
•  Hypothesis:  caused by cosmic-ray-induced neutrons 
•  BTAG SRAM had parity, but not ECC; BTAG parity errors thus lead to node crashes 
•  Neutron-beam testing at LANSCE consistent with field data 

—  Experimental data (3 datasets):  9.8; 17.4; 22.6 failures/wk* 
—  Field data:  24 BTAG parity errors/wk; 27.7 CPU failures/wk* 

•  Single node failures can have big impacts in large jobs 
—  BTAG parity errors: ~1/2 of all failures; ~2/3 of hardware failures*  

•  Successful system use: optimized checkpoint-restart (Daly, 2004 & 2005); spare node 
in allocation for immediate restart (Daly, 2003)  
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Silent Data Corruption (SDC) 

  “SDC occurs when incorrect data is delivered by a computing system to 
the user without any error being logged”  Cristian Constantinescu (AMD) 

  Examples of SDC: 
•  Teraflops Supercomputer [Constantinescu, 2000] 

—  Processor ECC disabled (firmware bug) 
•  UWI Study [Kola et al (2005)]  

—  Faults in storage and in staging/compute nodes lead to SDC 
—  Some root causes developed over time, so not observed during initial testing 

•  CERN FS Study [Panzer-Steindel (2007)] 
—  Disk Errors:  write, read, compare 2 GB file 

•  Every 2 hrs for 5 weeks on ~3000 nodes  500 errors on 100 nodes 
—  Recalculate and compare checksum for 33,700 files (~8.7 TB) 

•  22 mismatches  one bad file in 1500 
•  Storage Stack Study [Bairavasundaram et al (2008)] 

—  Checksum mismatches, identity discrepancies, parity inconsistencies 
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SDC: What We Know or Think We Know 
  SDC can affect networks, nodes, and file systems 

  SDC has multiple causes: [Constantinescu 2008] 
•  Temperature/voltage fluctuations, particles, manufacturing residues, oxide breakdown, 

electro-static discharge… 

  SDC will likely be more prevalent in new technologies [Borkar 2009; Pan et al 2008; 
Constantinescu 2006] 
•  Increased frequency, transistor counts, soft errors, and noise levels 
•  Decreased feature sizes and supply voltage 

  For a given device susceptibility, a larger platform is more likely to be 
affected 

  SDC could affect scientific desktop computing 
•  Laptops/desktops used for scientific computation may be equivalent to a cluster 

  Applications have differing susceptibility to faults that could lead to SDC 
•  Not all undetected faults will lead to SDC 
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SDC Research at LANL 
Goal: 

  Protect user calculations and data     

Activities: 

  Laboratory Testing (preliminary) 

  Testing of Platforms 

  Neutron-Beam Testing 
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Laboratory Testing 
  Goals: 

•  Understand behavior under diverse operating conditions; inform monitoring 
programs 

•  Verify vendor information 

  Experimental Protocol: 
•  Dual-core 65nm processor on a high-performance overclocking motherboard 

—  Easy to manipulate frequency, voltage and fan speeds 
•  C version of Linpack sized to run out of L1 and L2 caches 

—  Run on both cores simultaneously 
•  Manipulate frequency, voltage and fan speeds while running Linpack 

—  Limited control of temperature via adjusting fan speed 

  Outcomes: 
•  Multiple forms of SDC:  incorrect Linpack results; erroneous timestamps/frequency 
•  Other failures: early program exit, program crash, and system crash 
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Platform Testing 
  Specifics: 

•  OSATSDC Linpack-based software available 
—  Systems that use LSF/Moab 
—  Configure qos/queue to allow pre-emption on production platforms 
—  User-determined Linpack job mix (number of pe’s, problem size, …) 

•  Crisscross interconnect testing code 
—  6 patterns; all core combinations on nodes under test 

•  OSATSDC & Crisscross: parsing and reporting of results with automatic email on failure 
•  Goal of no user impact (pre-emptible jobs on otherwise-idle nodes) 

  Other issues detected: Grep (dynamic lib failing to load); slow nodes (4x typical) 

  Production Platforms: 
•  Rolling out Linpack-based and crisscross-based testing on production platforms 

  Decommissioned Platforms: 
•  Test at nominal or manipulate temperature/voltage 
•  SDC observed on three platforms (also incorrect temp readings) 
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Decommissioned Platform Testing 
  Platform 1: 70 incorrect Linpack calculations; all involve 1 node 

  Platform 2: 2 incorrect Linpack calculations: one-node jobs on different nodes 

  Platform 3: 2 incorrect Linpack calculations: two-node jobs on different nodes 

  Platforms 4 & 5:  no SDC 
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Neutron Beam Testing 
  Background Information: 

•  Cosmic-ray-induced neutrons can cause soft errors that lead to SDC and hard fails 
—  Hard fails are important since they affect system reliability 

•  LANL is at high altitude where neutrons that can cause SDC and hard fails are 
more prevalent (~ 6.4x) than at sea level 

  Tested HPC-relevant hardware 

  Key Research Questions: 
•  Do applications differ in their susceptibility to SDC and hard fails? 

—  Understand risks to scientific computation; find efficient test codes 
•  How does susceptibility vary among devices of a particular model? 

—  We have 10K’s of components; need to understand the “susceptibility” 
distribution 

•  How do temperature, voltage and frequency affect the SDC and hard fail rates? 
—  Temperature/voltage can be monitored and frequency can be adjusted 
—  For future study 
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Neutron Beam Testing 
  LANL’s LANSCE neutron beam has a spectrum very similar to that at 

terrestrial and aircraft altitudes 

  Tested entire nodes rather than hardware on risers 
•  Aim the beam at hardware of interest, but other hardware is irradiated 

  5 applications plus an idle condition 

  Replicates of hardware 

  Development of test environment complex 
•  Many details need to be worked out: 

—  Electrical requirements, height of table + device, beam aim, …. 
•  Scripts for running applications, error logging, heartbeat monitoring, … 
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Neutron-Beam Test Set-Up 
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PRELIMINARY Results of Beam Testing 

  Initial modeling completed, but model checking and refinement to be 
completed 

  Crashes and SDC observed; failed hardware 

  No detectable effect of application (doesn’t mean there isn’t one) 
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Possible Future SDC Research 

  E2E testing of HPC resources 

  Development of test codes 
•  Efficient and effective test codes for different subsystems/components 

  Environmental testing (temperature, particles, …) 

  Investigation of variability in application and device susceptibility 
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Research Challenges I 
  New Technology and Increasing Scale of HPC Platforms 

  What new reliability concerns emerge? 
•  Scale allows us to detect issues the vendors may not know about 
•  How can we quickly identify a small number of susceptible components in a sea of 

good ones? 

  Can we accurately predict platform reliability before procurement/
integration? 
•  Susceptibility distribution for a particular architecture 

  How can we effectively and efficiently test production systems to 
identify problems before they affect users? 
•  Need initial and ongoing E2E testing; balance between testing and production use 
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Research Challenges II 
  How well can we understand SDC? 

•  What are the causes SDC?  How do they change with technology?  
•  Can we identify faults that could cause SDC and focus use of fault-mitigation techniques? 
•  Can we understand the probability of SDC as a function of environmental/other conditions? 
•  How can we learn about SDC rates under nominal conditions? 

—  Rare under nominal conditions:  need a sound method of extrapolating from extreme 
conditions to nominal conditions or LOTS of time on test at nominal conditions 

—  Beam testing not sufficient 

  Can we predict the SDC rate of a particular application? 
•  Conversion from undetected-error rate 

  How can we ensure that applications keep running to correct answers? 
•  Development of application-specific and generic fault detection and resilience techniques 
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