### **Hard Data on Soft Errors**

A Global-scale Survey of GPGPU Memory Soft Error Rates

Imran Haque Department of Computer Science Stanford University

http://cs.stanford.edu/people/ihaque http://folding.stanford.edu ihaque@cs.stanford.edu



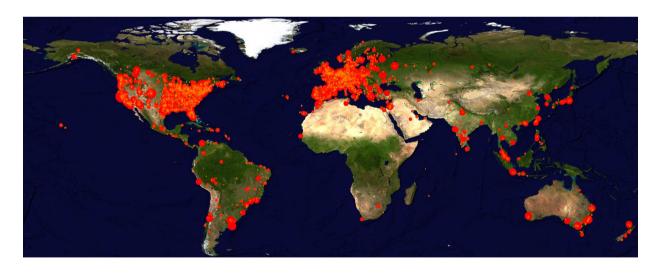
#### **Motivation**

- GPUs originate in **error-insensitive** consumer graphics
- Neither ECC nor parity on most\* graphics memory
- How suitable is the installed base of consumer GPUs (and consumer GPU-derived professional hardware!)
   for error-sensitive general purpose computing?

<sup>\*</sup> of which, more later

### **Motivation**

#### **CUDA-Enabled Package**


Folding@home (molecular dynamics)

**OpenMM** (molecular dynamics)

**PAPER** (3-D chemical similarity)

**SIML** (1-D chemical similarity)

| OS Type          | Native TFLOPS* | x86 TFLOPS* | Active CPUs | Total CPUs |
|------------------|----------------|-------------|-------------|------------|
| Windows          | 211            | 211         | 221349      | 2913112    |
| Mac OS X/PowerPC | 4              | 4           | 4836        | 132350     |
| Mac OS X/Intel   | 25             | 25          | 7904        | 105536     |
| Linux            | 49             | 49          | 28932       | 445150     |
| ATI GPU          | 1199           | 1265        | 11750       | 101032     |
| NVIDIA GPU       | 2242           | 4731        | 18840       | 157865     |
| PLAYSTATION®3    | 1086           | 2291        | 38502       | 876947     |
| Total            | 4816           | 8576        | 332113      | 4731992    |

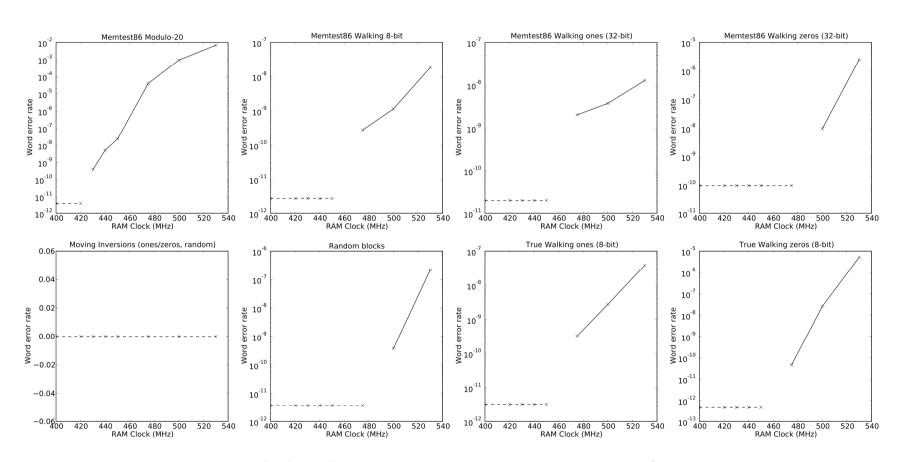


We've written a lot of GPU-enabled software, and we run it on a lot of GPUs.

#### MemtestG80 + MemtestCL

- Custom software, based on Memtest86 for x86 PCs
- Open source (LGPL), available at https://simtk.org/home/memtest
- Variety of test patterns:
  - Constant (ones, zeros, random)
  - Walking ones and zeros (8-bit, 32-bit)
  - Random words (on-GPU parallel PRNG)
  - Modulo-20 pattern sensitivity
  - Novel iterated-LCG integer logic tests
  - Bit fade

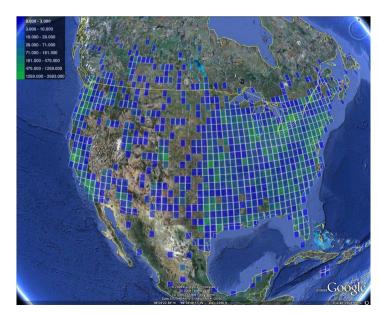
#### MemtestG80 – Validation


- Negative control verify that it doesn't throw spurious errors in "known-good" situations
  - Known-good PSUs, machines located in air-conditioned environments.

- 93,000 iterations on 700 MiB on GeForce 8800GTX
- >180,000 iters on 320MiB on each of 8 x Tesla C870
- No errors ever detected.

#### MemtestG80 – Validation

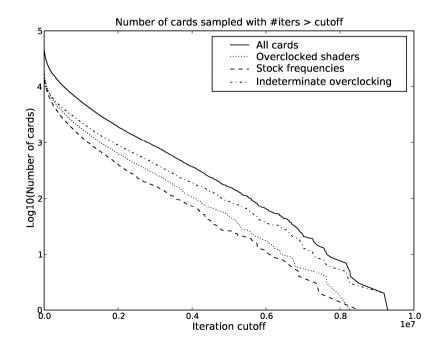
- Positive control verify that it does throw errors in situations that generate errors
- Overclocking generates memory errors (violation of timing constraints; loss of signal integrity)
- Tested GeForce 9500GT (memory clock = 400MHz) at 400, 420, 430, 440, 450, 475, 500, 530 MHz
  - 20 iterations for each frequency (only 10 @ 530MHz)
  - Cooled down and reset to 400MHz between tests


# MemtestG80 - Validation




Positive control displays pattern sensitivity of memory tests

# Methodology - Folding@home

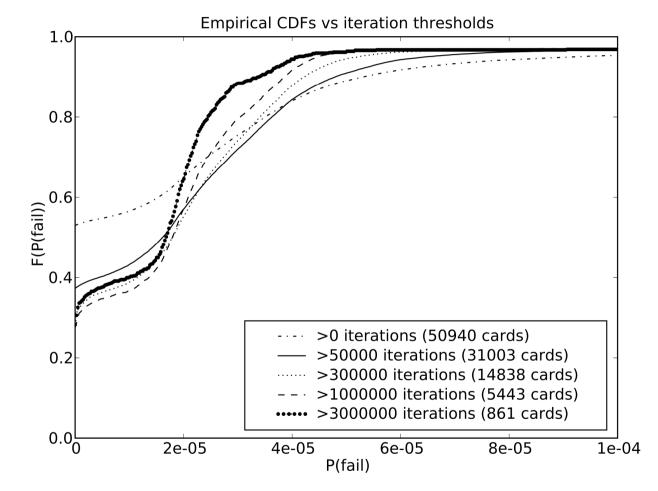

- Expect a low error rate and environment sensitivity,
  so must sample many cards in diverse environments
- Ran for ~7 months over 50,000+ NVIDIA GPUs on Folding@home (>840 TB-hr of testing)
- >97% of data tested 64 MiB RAM, k=512 logic LCG





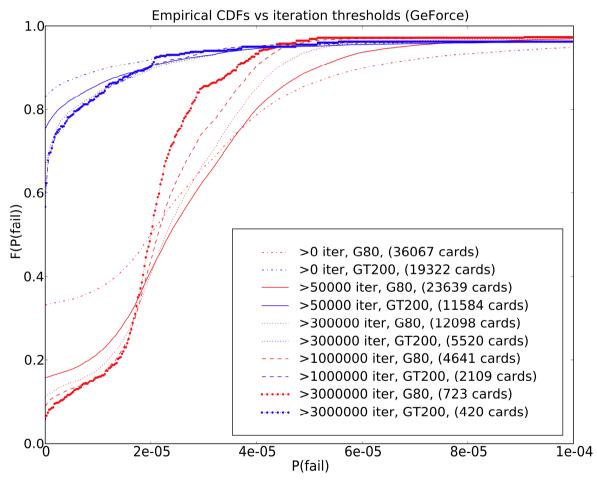
# Methodology – Folding@home

- We achieve good sampling over the NVIDIA consumer product line, and a few pro cards as well.
- Sampled similar numbers of stock and (shader) overclocked boards



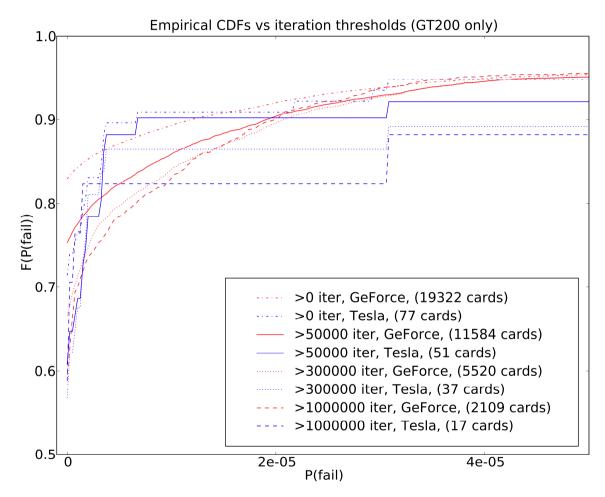

| Card Family                 | # cards $\geq$ 300,000 iter. |  |  |
|-----------------------------|------------------------------|--|--|
| Consumer graphics cards     | 17648 total                  |  |  |
| GeForce GTX                 | 5520                         |  |  |
| GeForce 8800                | 5478                         |  |  |
| GeForce 9800/GTS            | 4923                         |  |  |
| GeForce 9600                | 1516                         |  |  |
| Other Desktop GeForce       | 181                          |  |  |
| Mobile GeForce              | 30                           |  |  |
| Professional graphics cards | 89 total                     |  |  |
| Quadro FX                   | 83                           |  |  |
| Quadroplex 2200             | 6                            |  |  |
| Dedicated GPGPU cards       | 37 total                     |  |  |
| Tesla T10                   | 27                           |  |  |
| Tesla C1060                 | 10                           |  |  |

### Results


- We call a failure if any test in a MemtestG80 iteration failed (ignore exact WER)
- Model: each card has its own probability of error (test failure) = P<sub>f</sub>. Cards are drawn iid from an underlying distribution P(P<sub>f</sub>)
- What is the distribution of failure probabilities?

# **Results**

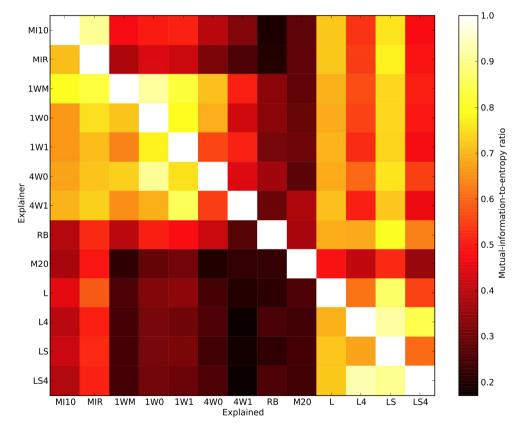



Population of failing cards has a mode around  $P_f = 2x10^{-5} = ^4$  failures/week

# **Analysis – Breakdown by Architecture**



GT200 has typical  $P_f = 2.2 \times 10^{-6}$  (one-tenth of G80!) Both archs. show monotonic decline in zero-error populations.


# Analysis – GeForce vs Tesla



Tesla traces are rougher from poorer sampling, but appear to represent same error distribution as GeForce data.

# **Analysis – Test Mutual Information**

- Consider mutual information between tests as a nonlinear covariance measure.
- Mod-20 test is unique
- Random blocks test is a good logic workout
- Logic tests measure a failure mode distinct from memory tests



### What about Fermi?

- NVIDIA's new Fermi (GF100) architecture adds SECDED ECC (disabled in consumer GeForce line), GDDR5 memory bus ECC, and L1/L2 caches
- Does Fermi redesign affect architectural vulnerability (error rate or error type)?
  - G80/GT200 typically failed on Mod-20 test first
- FAH test does not run (yet) on Fermi; used standalone MemtestG80 w/reporting capabilities
  - In-house: 1 GeForce GTX 480, 1 Tesla C2050
  - Public: 44 GeForce GTX 470, 43 GeForce GTX 480

### Results – Fermi

- Tesla: no app-level errors seen, at least one doublebit error reported by ECC
- **GeForce**: most cards exhibited memory errors observed in-house  $P_f = 1.6 \times 10^{-5}$ 
  - Non-overclocked cards vulnerable to 8-bit walking zeros
  - RAM-overclocked first failed 8- or 32-bit walking zeros
  - Core/shader-overclocked failed random blocks
- Very different vulnerabilities than G80/GT200 but problems still exist!

#### What about AMD...and the CPU?

- RV700 and Evergreen both have GDDR5 (GDDR3 on low-end models) and L1/L2 hierarchy
- No current OpenCL cores on FAH; used volunteer submissions from standalone MemtestCL
  - In-house:
    - Radeon 4870 (RV770); Radeon 5870 (Cypress)
  - Public:
    - RV700: 2 RV710, 15 RV730, 88 RV770
    - Evergreen: 1 Cedar, 6 Redwood, 50 Juniper, 103 Cypress
    - CPUs: 16 Core i7, 11 Core 2, 17 Phenom/Athlon II

# **Results – AMD+CPU**

- **CPU**: no errors seen
- RV770: typically fail random blocks/mod-20 around  $P_f = 7 \times 10^{-4}$
- Cypress: almost all cards eventually fail random blocks around  $P_f = 4 \times 10^{-4}$
- **BUT**: error patterns (#bits failed/iteration) are suspicious currently working with AMD to see if it's a software (MemtestCL or CL runtime) problem.

# Acknowledgments

Pande lab, Stanford University



Simbios (NIH Roadmap GM072970)



NVIDIA



AMD



Folding@home donors



# Summary

- Wrote MemtestG80 to test for GPU memory errors.
- Verified proper operation of MemtestG80 with negative and positive control tests.
- Ran MemtestG80 on over 50,000 GPUs, 840+ TB-hr
- 2/3 of tested GPUs exhibit pattern-sensitive soft errors
- Architecture makes a difference: GT200 is much more reliable than G80; GF100 introduces a new set of vulnerabilities; AMD is yet another story.
- GT200 Tesla cards on FAH performed similarly to GeForces (but GF100 ECC seems to make a difference on Tesla C20xx)

### **Conclusions**

• Sufficiently high hard error rate (2%) that explicit testing is warranted.

 Some form of ECC appears to be crucial for reliable GPGPU computation.

https://simtk.org/home/memtest

ihaque@cs.stanford.edu