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Introduction

Introduction

Parallel computers become larger and faster

Failure frequency increases

Applications need fault tolerance protocol that:

minimizes the impact of failures
provides good performances on failure free execution

MPI Applications
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Introduction

Existing fault tolerance protocols

Communications between processes create dependences between them
(Lamport’s happened-before relation)

Consistent global state : state that could have been seen during failure free
execution

Fault tolerance protocol keeps a consistant global state:

Global restart
Save all communication events

3 main families of fault tolerance protocols:

1 Coordinated checkpoint

2 Uncoordinated checkpoint

3 Message logging
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Existing Fault Tolerance Protocols

Existing Fault Tolerance Protocols

Coordinated Checkpointing

Assumption: Non-deterministic
applications

Checkpoints are coordinated on
every process

Failure → all processes rollback to
the same checkpoint and then
restart
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Advantages

Easy recovery

Easy garbage collect

Drawbacks
Global restart

Congestion on I/O resources
(Oldfield 2007)
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Existing Fault Tolerance Protocols

Existing Fault Tolerance Protocols

Uncoordinated Checkpointing

Assumption: Non-deterministic
applications

Checkpoints are taken
independently among processes
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Advantages

No forced global restart

Checkpoint scheduling

Drawbacks
Risk of domino effect

Complex garbage collect
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Existing Fault Tolerance Protocols

Existing Fault Tolerance Protocols

Message logging

Assumption: Piecewise deterministic
applications

Processes log the messages they send

Checkpoints are used to reduce the extent
of rollback during recovery

Failure → Failed processes roll back to
their most recent checkpoint and recover
thanks to logged messages
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Advantages

Limit the number of
processes to roll back

Simple garbage collect

No domino effect

Drawbacks
All messages are logged:

Impact on performance
Memory consumption
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Application analysis

Contributions

Existing fault tolerance protocol assumes that applications are:

Non-deterministic: After restart, execution may be different

Piecewise deterministic: If the sequence of receptions is the same on every
process, the behavior is the same

1 Application analysis to show that HPC applications are send-deterministic :

Sequence of sends is always the same
Even if receptions order is not the same, the behavior is the same

2 Design a protocol that avoids:

Domino effect
Logging all messages
Global restart
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Application analysis

Applications Analysis

Methodology: Static analysis of applications consisting of looking at each
communication pattern and studying its deterministic nature (Cappello 2010)

Analyzed applications:
27 MPI HPC applications

Nas Benchmarks

6 NERSC Benchmarks

2 USQCD Benchmarks

6 Sequoia Benchmarks

SpecFEM3D, Nbody, Ray2mesh, ScaLAPACK SUMMA
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Application analysis

Applications Analysis

Deterministic communication pattern

Sequences of sends and receives are the same from one execution to another

MPI_Irecv(T[i],..., i, ...);

/* where i is the source */

MPI_Isend(x, ..., i, ...);

/* where i is the destination */

MPI_WaitAll(2, ...);
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Application analysis

Applications Analysis

Non-deterministic communication pattern

Sequences of send and receives may be different from one execution to another

while()

{

MPI_IProbe(ANY_SOURCE, tag1)

while(flag ==true)

{

proc = &status.mpi_SOURCE;

MPI_Recv(x, ..., proc,

tag1, ...);

//modify x

MPI_Send(x, ..., proc,

tag2, ...);

}
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Application analysis

Application analysis

Send deterministic communication pattern

Sequence of sends is the same from one execution to another

Send-deterministic
communication pattern

No forced reception order

Same result on different
reception order

Same sequence of sends on
every process with the same
content

for(i = 0 ; i < nb ; i++)

{

MPI_Irecv(T[i],..., i, ...);

/* where i is the source */

MPI_Send(x, ..., i, ...);

/* where i is the destination */

}

for(i = 0 ; i < nb ; i++)

{

MPI_WaitAny(...);

...

}
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Application analysis

Application Collective SD CD ND Type
communications patterns patterns patterns

ScaLAPACK SUMMA x 0 x 0 D
SP 13 1 6 0 SD
BT 12 1 4 0 SD
LU x 0 x 0 D
CG x 0 x 0 D
MG x 0 x 0 D
FT x 0 x 0 D
EP x 0 x 0 D
DT x 0 x 0 D

Nbody x 0 x 0 D
USQCD-CPS 2 31 0 0 SD

USQCD-MILC 1099 517 111 0 SD
Sequoia-UMT 52 1 1 0 SD

Sequoia-lammp 867 4 33 0 SD
Sequoi-IOR 18 2 0 0 SD

Sequoia-AMG 41 76 4 1 ND
Sequoia-Sphot 7 7 1 0 SD

Sequoia-IRS x x x 0 SD
NERSC-CAM 700 61 4 0 SD

NERSC-IMPACT 0 12 97 0 SD
NERSC-MAESTRO 21 9 9 0 SD

NERSC-GTC x 0 x 0 D
NERSC-PARATEC x 0 x 0 D

SpecFEM3D x 0 x 0 D
Jacoby x 0 x 0 D

Ray2mesh 7 2 0 0 SD
Ray2mesh-MS 4 2 1 3 ND
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Application analysis

Applications Analysis

Results

44,5% are deterministic

48,1% are send-deterministic

7,4% are non-deterministic

Most analyzed applications are send-deterministic
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Application analysis

Impact of Send-determinism

Orphan message: a message that
is received but not sent

send-determinism → all
message are re-sent:
Orphan messages are always
re-sent

Message order for
non-dependent messages has
no impact on message send:
No need to keep sequences
numbers
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Application analysis

Uncoordinated checkpointing for send-deterministic MPI
applications

Uncoordinated checkpointing

No message logging

Message delivery order not
forced during recovery

Upon Crash

Failed processes roll back to
their most recent checkpoint

Every process that sent a
message to a failed process
roll back
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Application analysis

Uncoordinated checkpointing for send-deterministic MPI
applications

No logged messages → Risk of domino effect

Epoch: checkpoint sequence
number

Log messages from the past
to the future:

Send ACK containing the
epoch on the reception of
a message
Compare ACK epoch and
sender epoch: log if
greater

p0

p1

p2

p3

p4

m1

m2

m3

m4

m5

m6 m7

m8

m9

m10

epoch=2 epoch=3

16 / 29



Application analysis

Uncoordinated checkpoint for send-deterministic MPI
applications

Causality Problem No constraints on replayed messages order after a failure
But Causality order has to be ensured

Problem

1 Rollbacks follow
causal dependency
paths

2 Logged messages and
checkpoints break
these paths

3 Processes do not roll
back to receive
orphan messages

4 Processes do not have
enough information to
order causally
dependent messages
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Application analysis

Uncoordinated checkpoint for send-deterministic MPI
applications

Recovery: Causality Problem
Phase number: Messages in a causal path that is not interrupted by a checkpoint
or a logged messages are in the same phase

Piggyback phase number on
each message

checkpoint: increment phase
number

logged messages: update
and increment receiver’s
phase number if smaller

non-logged message: update
receiver’s phase number

Upon Recovery: Messages sent
according to phase numbers
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Application analysis

Uncoordinated checkpointing for send-deterministic
applications

Advantages

No global rollback

No domino effect

No need to log all messages

Easy garbage collect

Drawbacks
Global coordination for
recovery
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Performance evaluation

Implementation

Implementation of our prototype in MPICH2:

Communication management in Nemesis (driver communication device):

ACK management
Message logging
Implementation on TCP and Myrinet 10G

Rollback/Recovery management in Hydra (MPICH process manager)

Uncoordinated process checkpointing
Failure detection (processes failure only)
Computation of the set of processes to rollback
Processes restart (ongoing work)
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Performance evaluation

Performance evaluation

NetPipe on 2 nodes: evaluation of bandwidth and latency on Myrinet 10G

CLASS D NAS Benchmark 3.3 Performance on Myrinet 10G

Number of rolled back processes and logged messages on CLASS D NAS
Benchmark on 128 processes

Experimental setup

45 nodes

2 Intel Xeon E5440 QC (4 cores) processors

8 GB of memory

10G-PCIE-8A-C Myri-10G NIC

Linux with kernel 2.6.26
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Performance evaluation

Performance evaluation

Implementation details
1 ACK implementation:

Small messages (< 1KB):
1 ACK sent only when the message should be logged
2 Messages are copied until the ACK is received

Big messages: ACK sent for each message

2 Rolled back processes: Offline computation of set of processes to roll back
according to epoch number
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Performance evaluation

Latency and bandwidth

Small overhead (15%) for small messages → Management of piggybacked
data

Impact of 39% on the bandwidth for big messages → Extra copy of message
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Figure: Myrinet 10G Ping-Pong Performance
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Performance evaluation

Overhead on failure free execution

Almost no impact without logging

At most 5% overhead when all messages are logged
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Figure: NAS Performance on Myrinet 10G
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Performance evaluation

Number of rolled back processes

Evaluation of the number of processes to rollback: almost all processes rollback

Random uncoordinated checkpoint is not always the right solution

Take communication patterns into account
→ processes often communicate with their neighbors

Idea

Create cluster of processes to limit the numbers of rollback
→ Force message logging by using different epochs for different clusters

Carefully choose clusters to limit the number of logged messages
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Performance evaluation

Process clustering example
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Figure: Communication density graph and clustering in CG
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Performance evaluation

Number of logged messages and rolled back processes

Only a subset of messages are logged

Only a subset of processes rollback

Small cluster size → few rolled back processes

Big cluster size → few logged messages

Tradeoff between number of logged messages and number of rolled back processes

Cluster 4 8 16
%log %rl %log %rl %log %rl

MG 9.5 62.5 17.1 56.3 25.4 42.1
LU 10.35 62.5 24.14 56.3 25.9 42.1
FT 37.3 62.5 43.6 56 46.8 53
CG 2.9 62.5 3.4 56.3 15 43.8
BT 13 62.6 25.2 56.4 36.7 53.3

Table: Number of logged messages and rolled back processes according to cluster size on
class D NAS Benchmark for 128 processes

27 / 29



Conclusion and future work

Conclusion and future work

Conclusion
Presentation of Send-determinism

Presentation of an uncoordinated checkpointing protocol using
send-determinism

No global restart
Only a subset of logged messages

Protocol performance:

Almost no overhead on latency
39% overhead on bandwidth for big logged messages
Small impact on application performance

Clustering solution based on communication pattern:

Number of rolled back processes approaching 50%
Small percent of logged messages
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Conclusion and future work

Conclusion and future work

Future work
Evaluation of recovery time

Further study on the association of send-determinism and clustering

Impact of send-determinism on other rollback/recovery protocols
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