
An Uncoordinated Checkpointing Protocol for
Send-deterministic HPC Application

Amina Guermouche1,2, Thomas Ropars1, Elisabeth Brunet1, Marc Snir3,
Franck Cappello1,3

(1): INRIA Saclay-̂Ile de France, F-91893 Orsay, France
(3): University of Illinois at Urbana-Champaign - College of Engineering, Urbana, IL, USA

(2): Université Paris Sud, LRI, F-91405 Orsay, France

1 / 29



Introduction

Introduction

Parallel computers become larger and faster

Failure frequency increases

Applications need fault tolerance protocol that:

minimizes the impact of failures
provides good performances on failure free execution

MPI Applications

2 / 29



Introduction

Existing fault tolerance protocols

Communications between processes create dependences between them
(Lamport’s happened-before relation)

Consistent global state : state that could have been seen during failure free
execution

Fault tolerance protocol keeps a consistant global state:

Global restart
Save all communication events

3 main families of fault tolerance protocols:

1 Coordinated checkpoint

2 Uncoordinated checkpoint

3 Message logging

3 / 29



Existing Fault Tolerance Protocols

Existing Fault Tolerance Protocols

Coordinated Checkpointing

Assumption: Non-deterministic
applications

Checkpoints are coordinated on
every process

Failure → all processes rollback to
the same checkpoint and then
restart

p0

p1

p2

p3

m1

m2

m4

Advantages

Easy recovery

Easy garbage collect

Drawbacks
Global restart

Congestion on I/O resources
(Oldfield 2007)

4 / 29



Existing Fault Tolerance Protocols

Existing Fault Tolerance Protocols

Uncoordinated Checkpointing

Assumption: Non-deterministic
applications

Checkpoints are taken
independently among processes

p0

p1

p2

p3

m1

m4

m2

m3

Advantages

No forced global restart

Checkpoint scheduling

Drawbacks
Risk of domino effect

Complex garbage collect

5 / 29



Existing Fault Tolerance Protocols

Existing Fault Tolerance Protocols

Message logging

Assumption: Piecewise deterministic
applications

Processes log the messages they send

Checkpoints are used to reduce the extent
of rollback during recovery

Failure → Failed processes roll back to
their most recent checkpoint and recover
thanks to logged messages

p0

p1

p2

p3

m1

m2

m4

Advantages

Limit the number of
processes to roll back

Simple garbage collect

No domino effect

Drawbacks
All messages are logged:

Impact on performance
Memory consumption

6 / 29



Application analysis

Contributions

Existing fault tolerance protocol assumes that applications are:

Non-deterministic: After restart, execution may be different

Piecewise deterministic: If the sequence of receptions is the same on every
process, the behavior is the same

1 Application analysis to show that HPC applications are send-deterministic :

Sequence of sends is always the same
Even if receptions order is not the same, the behavior is the same

2 Design a protocol that avoids:

Domino effect
Logging all messages
Global restart

7 / 29



Application analysis

Applications Analysis

Methodology: Static analysis of applications consisting of looking at each
communication pattern and studying its deterministic nature (Cappello 2010)

Analyzed applications:
27 MPI HPC applications

Nas Benchmarks

6 NERSC Benchmarks

2 USQCD Benchmarks

6 Sequoia Benchmarks

SpecFEM3D, Nbody, Ray2mesh, ScaLAPACK SUMMA

8 / 29



Application analysis

Applications Analysis

Deterministic communication pattern

Sequences of sends and receives are the same from one execution to another

MPI_Irecv(T[i],..., i, ...);

/* where i is the source */

MPI_Isend(x, ..., i, ...);

/* where i is the destination */

MPI_WaitAll(2, ...);

9 / 29



Application analysis

Applications Analysis

Non-deterministic communication pattern

Sequences of send and receives may be different from one execution to another

while()

{

MPI_IProbe(ANY_SOURCE, tag1)

while(flag ==true)

{

proc = &status.mpi_SOURCE;

MPI_Recv(x, ..., proc,

tag1, ...);

//modify x

MPI_Send(x, ..., proc,

tag2, ...);

}

10 / 29



Application analysis

Application analysis

Send deterministic communication pattern

Sequence of sends is the same from one execution to another

Send-deterministic
communication pattern

No forced reception order

Same result on different
reception order

Same sequence of sends on
every process with the same
content

for(i = 0 ; i < nb ; i++)

{

MPI_Irecv(T[i],..., i, ...);

/* where i is the source */

MPI_Send(x, ..., i, ...);

/* where i is the destination */

}

for(i = 0 ; i < nb ; i++)

{

MPI_WaitAny(...);

...

}

11 / 29



Application analysis

Application Collective SD CD ND Type
communications patterns patterns patterns

ScaLAPACK SUMMA x 0 x 0 D
SP 13 1 6 0 SD
BT 12 1 4 0 SD
LU x 0 x 0 D
CG x 0 x 0 D
MG x 0 x 0 D
FT x 0 x 0 D
EP x 0 x 0 D
DT x 0 x 0 D

Nbody x 0 x 0 D
USQCD-CPS 2 31 0 0 SD

USQCD-MILC 1099 517 111 0 SD
Sequoia-UMT 52 1 1 0 SD

Sequoia-lammp 867 4 33 0 SD
Sequoi-IOR 18 2 0 0 SD

Sequoia-AMG 41 76 4 1 ND
Sequoia-Sphot 7 7 1 0 SD

Sequoia-IRS x x x 0 SD
NERSC-CAM 700 61 4 0 SD

NERSC-IMPACT 0 12 97 0 SD
NERSC-MAESTRO 21 9 9 0 SD

NERSC-GTC x 0 x 0 D
NERSC-PARATEC x 0 x 0 D

SpecFEM3D x 0 x 0 D
Jacoby x 0 x 0 D

Ray2mesh 7 2 0 0 SD
Ray2mesh-MS 4 2 1 3 ND

12 / 29



Application analysis

Applications Analysis

Results

44,5% are deterministic

48,1% are send-deterministic

7,4% are non-deterministic

Most analyzed applications are send-deterministic

13 / 29



Application analysis

Impact of Send-determinism

Orphan message: a message that
is received but not sent

send-determinism → all
message are re-sent:
Orphan messages are always
re-sent

Message order for
non-dependent messages has
no impact on message send:
No need to keep sequences
numbers

p0

p1

p2

p3

p4

m1

m2

m3

m4

m5

m6 m7

m8

m9

m10

14 / 29



Application analysis

Uncoordinated checkpointing for send-deterministic MPI
applications

Uncoordinated checkpointing

No message logging

Message delivery order not
forced during recovery

Upon Crash

Failed processes roll back to
their most recent checkpoint

Every process that sent a
message to a failed process
roll back

p0

p1

p2

p3

p4

m1

m2

m3

m4

m5

m6 m7

m8

m9

m10

epoch=2 epoch=3

15 / 29



Application analysis

Uncoordinated checkpointing for send-deterministic MPI
applications

No logged messages → Risk of domino effect

Epoch: checkpoint sequence
number

Log messages from the past
to the future:

Send ACK containing the
epoch on the reception of
a message
Compare ACK epoch and
sender epoch: log if
greater

p0

p1

p2

p3

p4

m1

m2

m3

m4

m5

m6 m7

m8

m9

m10

epoch=2 epoch=3

16 / 29



Application analysis

Uncoordinated checkpoint for send-deterministic MPI
applications

Causality Problem No constraints on replayed messages order after a failure
But Causality order has to be ensured

Problem

1 Rollbacks follow
causal dependency
paths

2 Logged messages and
checkpoints break
these paths

3 Processes do not roll
back to receive
orphan messages

4 Processes do not have
enough information to
order causally
dependent messages

p0

p1

p2

p3

p4

m0

m1 m2

m3

epoch=2

m5

m4
m6

17 / 29



Application analysis

Uncoordinated checkpoint for send-deterministic MPI
applications

Recovery: Causality Problem
Phase number: Messages in a causal path that is not interrupted by a checkpoint
or a logged messages are in the same phase

Piggyback phase number on
each message

checkpoint: increment phase
number

logged messages: update
and increment receiver’s
phase number if smaller

non-logged message: update
receiver’s phase number

Upon Recovery: Messages sent
according to phase numbers

p0

p1

p2

p3

p4

m0

m1 m2

m3

epoch=2

m5

m4
m6

1

1

1

1

1

2

2

2

2

2 3

3

18 / 29



Application analysis

Uncoordinated checkpointing for send-deterministic
applications

Advantages

No global rollback

No domino effect

No need to log all messages

Easy garbage collect

Drawbacks
Global coordination for
recovery

19 / 29



Performance evaluation

Implementation

Implementation of our prototype in MPICH2:

Communication management in Nemesis (driver communication device):

ACK management
Message logging
Implementation on TCP and Myrinet 10G

Rollback/Recovery management in Hydra (MPICH process manager)

Uncoordinated process checkpointing
Failure detection (processes failure only)
Computation of the set of processes to rollback
Processes restart (ongoing work)

20 / 29



Performance evaluation

Performance evaluation

NetPipe on 2 nodes: evaluation of bandwidth and latency on Myrinet 10G

CLASS D NAS Benchmark 3.3 Performance on Myrinet 10G

Number of rolled back processes and logged messages on CLASS D NAS
Benchmark on 128 processes

Experimental setup

45 nodes

2 Intel Xeon E5440 QC (4 cores) processors

8 GB of memory

10G-PCIE-8A-C Myri-10G NIC

Linux with kernel 2.6.26

21 / 29



Performance evaluation

Performance evaluation

Implementation details
1 ACK implementation:

Small messages (< 1KB):
1 ACK sent only when the message should be logged
2 Messages are copied until the ACK is received

Big messages: ACK sent for each message

2 Rolled back processes: Offline computation of set of processes to roll back
according to epoch number

22 / 29



Performance evaluation

Latency and bandwidth

Small overhead (15%) for small messages → Management of piggybacked
data

Impact of 39% on the bandwidth for big messages → Extra copy of message

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

1 8 64 1K 64K 1M 8M

L
at

en
cy

 i
n
 S

ec
o
n
d
s

Message Size in Bytes

mpich
protocol (no logging)
protocol (logging)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

1 8 64 1K 64K 1M 8M

B
an

d
w

id
th

 i
n
 M

b
p
s

Message Size in Bytes

mpich
protocol (no logging)
protocol (logging)

Figure: Myrinet 10G Ping-Pong Performance

23 / 29



Performance evaluation

Overhead on failure free execution

Almost no impact without logging

At most 5% overhead when all messages are logged

 0.96
 0.98

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14

BT.D.128 CG.D.128 MG.D.128

O
v
er

h
ea

d

MPICH2
Protocol (no logging)

Protocol (logging)

Figure: NAS Performance on Myrinet 10G

24 / 29



Performance evaluation

Number of rolled back processes

Evaluation of the number of processes to rollback: almost all processes rollback

Random uncoordinated checkpoint is not always the right solution

Take communication patterns into account
→ processes often communicate with their neighbors

Idea

Create cluster of processes to limit the numbers of rollback
→ Force message logging by using different epochs for different clusters

Carefully choose clusters to limit the number of logged messages

25 / 29



Performance evaluation

Process clustering example

Ep	
  0	
  

Ep	
  2	
  

Ep	
  4	
  

Ep	
  6	
  

Ep	
  8	
  

Ep	
  10	
  

Ep	
  12	
  

Ep	
  14	
  

Figure: Communication density graph and clustering in CG

26 / 29



Performance evaluation

Number of logged messages and rolled back processes

Only a subset of messages are logged

Only a subset of processes rollback

Small cluster size → few rolled back processes

Big cluster size → few logged messages

Tradeoff between number of logged messages and number of rolled back processes

Cluster 4 8 16
%log %rl %log %rl %log %rl

MG 9.5 62.5 17.1 56.3 25.4 42.1
LU 10.35 62.5 24.14 56.3 25.9 42.1
FT 37.3 62.5 43.6 56 46.8 53
CG 2.9 62.5 3.4 56.3 15 43.8
BT 13 62.6 25.2 56.4 36.7 53.3

Table: Number of logged messages and rolled back processes according to cluster size on
class D NAS Benchmark for 128 processes

27 / 29



Conclusion and future work

Conclusion and future work

Conclusion
Presentation of Send-determinism

Presentation of an uncoordinated checkpointing protocol using
send-determinism

No global restart
Only a subset of logged messages

Protocol performance:

Almost no overhead on latency
39% overhead on bandwidth for big logged messages
Small impact on application performance

Clustering solution based on communication pattern:

Number of rolled back processes approaching 50%
Small percent of logged messages

28 / 29



Conclusion and future work

Conclusion and future work

Future work
Evaluation of recovery time

Further study on the association of send-determinism and clustering

Impact of send-determinism on other rollback/recovery protocols

29 / 29


	Introduction
	Existing Fault Tolerance Protocols
	Application analysis
	Performance evaluation
	Conclusion and future work

