An Uncoordinated Checkpointing Protocol for
Send-deterministic HPC Application

Amina Guermouche®?, Thomas Ropars!, Elisabeth Brunet!, Marc Snir3,
Franck Cappello!:3

(1): INRIA Saclay-ile de France, F-91893 Orsay, France
(3): University of lllinois at Urbana-Champaign - College of Engineering, Urbana, IL, USA
(2): Université Paris Sud, LRI, F-91405 Orsay, France

foint Labggt”

¢ \for Petascale Computation

1/29

Introduction

Introduction

Parallel computers become larger and faster

Failure frequency increases

Applications need fault tolerance protocol that:

@ minimizes the impact of failures
e provides good performances on failure free execution

MPI Applications

2/29

Introduction

Existing fault tolerance protocols

@ Communications between processes create dependences between them
(Lamport’s happened-before relation)

o Consistent global state : state that could have been seen during failure free
execution

@ Fault tolerance protocol keeps a consistant global state:

o Global restart
o Save all communication events

3 main families of fault tolerance protocols:
@ Coordinated checkpoint
@ Uncoordinated checkpoint
© Message logging

3/29

Existing Fault Tolerance Protocols

Existing Fault Tolerance Protocols

Coordinated Checkpointing

@ Assumption: Non-deterministic

PO G
applications \m """"
@ Checkpoints are coordinated on L L T — =
every process x rrf
. P2 —{J———- — X
@ Failure — all processes rollback to ’X-m-z --------- -
the same checkpoint and then s _
restart ST
Advantages Drawbacks
o Easy recovery o Global restart
o Easy garbage collect o Congestion on |/0O resources

(Oldfield 2007)

4/29

Existing Fault Tolerance Protocols

Existing Fault Tolerance Protocols

Uncoordinated Checkpointing

@ Assumption: Non-deterministic P —
applications \ T
@ Checkpoints are taken P =
independently among processes x "f
n2 —7 X
o W /\
m3 \ m4
PO ————————
Advantages Drawbacks
@ No forced global restart o Risk of domino effect

@ Checkpoint scheduling o Complex garbage collect

5/29

Existing Fault Tolerance Protocols

Existing Fault Tolerance Protocols

Message logging

@ Assumption: Piecewise deterministic R
applications \m1
@ Processes log the messages they send P =0
o Checkpoints are used to reduce the extent x "f v
. 2 < 7N
of rollback during recovery X"m-z --------
o Failure — Failed processes roll back to p3 —03

their most recent checkpoint and recover
thanks to logged messages

Advantages Drawbacks
@ Limit the number of o All messages are logged:
processes to roll back o Impact on performance

@ Simple garbage collect e Memory consumption

@ No domino effect

6/29

Application analysis

Contributions

Existing fault tolerance protocol assumes that applications are:
@ Non-deterministic: After restart, execution may be different

@ Piecewise deterministic: If the sequence of receptions is the same on every
process, the behavior is the same

@ Application analysis to show that HPC applications are send-deterministic:
e Sequence of sends is always the same
o Even if receptions order is not the same, the behavior is the same

@ Design a protocol that avoids:

o Domino effect
o Logging all messages
o Global restart

7/29

Application analysis

Applications Analysis

Methodology: Static analysis of applications consisting of looking at each
communication pattern and studying its deterministic nature (Cappello 2010)

Analyzed applications:
27 MPI HPC applications

Nas Benchmarks

6 NERSC Benchmarks

2 USQCD Benchmarks

6 Sequoia Benchmarks

SpecFEM3D, Nbody, Ray2mesh, ScaLAPACK SUMMA

8/29

Application analysis

Applications Analysis

Deterministic communication pattern J

Sequences of sends and receives are the same from one execution to another

MPI_Irecv(T[il,..., i, ...);

/* where i is the source */
MPI_Isend(x, ..., i, ...);

/* where i is the destination */
MPI_WaitAl11l(2, ...);

9/29

Application analysis

Applications Analysis

Non-deterministic communication pattern
Sequences of send and receives may be different from one execution to another J

while()
{
MPI_IProbe (ANY_SOURCE, tagl)
while(flag ==true)
{
proc = &status.mpi_SOURCE;
MPI_Recv(x, ..., proc,
tagl, ...);
//modify x
MPI_Send(x, ..., proc,
tag2, ...);

10/29

Application analysis

Application analysis

Send deterministic communication pattern J

Sequence of sends is the same from one execution to another

Send-deterministic
communication pattern
@ No forced reception order

@ Same result on different
reception order

@ Same sequence of sends on
every process with the same
content

for(i = 0 ; i < nb ; i++)
{
MPI_Irecv(T[il,..., i, ...);
/* where i is the source */
MPI_Send(x, ..., i, ...);
/* where i is the destination *
}
for(i =0 ; 1 < nb ; i++)
{
MPI_WaitAny(...);

11/29

Application analysis

Application Collective SD CD ND Type
communications patterns patterns patterns
ScaLAPACK SUMMA X 0 X 0 D
SP 13 1 6 0 SD
BT 12 1 4 0 SD
LU X 0 X 0 D
CG X 0 X 0 D
MG X 0 X 0 D
FT X 0 X 0 D
EP X 0 X 0 D
DT X 0 X 0 D
Nbody X 0 X 0 D
USQCD-CPS 2 31 0 0 SD
USQCD-MILC 1099 517 111 0 SD
Sequoia-UMT 52 1 1 0 SD
Sequoia-lammp 867 4 33 0 SD
Sequoi-IOR 18 2 0 0 SD
Sequoia-AMG 41 76 4 1 ND
Sequoia-Sphot 7 7 1 0 SD
Sequoia-IRS X X X 0 SD
NERSC-CAM 700 61 4 0 SD
NERSC-IMPACT 0 12 97 0 SD
NERSC-MAESTRO 21 9 9 0 SD
NERSC-GTC X 0 X 0 D
NERSC-PARATEC X 0 X 0 D
SpecFEM3D X 0 X 0 D
Jacoby X 0 X 0 D
Ray2mesh 7 2 0 0 SD
Ray2mesh-MS 4 2 1 3 ND

Application analysis

Applications Analysis

Results
@ 44.5% are deterministic
@ 48,1% are send-deterministic

@ 7,4% are non-deterministic

Most analyzed applications are send-deterministic

13/29

Application analysis

Impact of Send-determinism

Orphan message: a message that
is received but not sent

o < ____--- --=
@ send-determinism — all ,,%\,.,3 \"19

message are re-sent: pt o oK
Orphan messages are always ms, mg 10
re-sent P—0 S

@ Message order for
non-dependent messages has
no impact on message send:
No need to keep sequences
numbers

o k)
2 5]
(]
1
3
/
3 G
3
1

Application analysis

Uncoordinated checkpointing for send-deterministic MPI

applications

@ Uncoordinated checkpointing
@ No message logging

@ Message delivery order not
forced during recovery

Upon Crash

@ Failed processes roll back to
their most recent checkpoint

@ Every process that sent a
message to a failed process
roll back

epoch=2 epoch=3
N \
I o
po \\\ U W——
\
mty, \m3 N m9
\ \
1 {'}
P I <A -
\
// m5, | m8, 10
p2 —F)
T\ <
m2\ m4

15 /29

Application analysis

Uncoordinated checkpointing for send-deterministic MPI

applications

No logged messages — Risk of domino effect

@ Epoch: checkpoint sequence
number

@ Log messages from the past
to the future:

e Send ACK containing the
epoch on the reception of
a message

o Compare ACK epoch and
sender epoch: log if
greater

epoch=2 epoqh=3
\ \,
\
p0 —{} o
\ i
m1) m3 N m9
1 "} I
P o o -
! mS5,) m8, 10
/
p2 —F i,
\ VT
m32, 4 m4
\ \
I P N
p3 =N ‘—'\< _______________ N\
mé mf \

p4

16 /29

Application analysis

Uncoordinated checkpoint for send-deterministic MPI

applications

Causality Problem No constraints on replayed messages order after a failure
But Causality order has to be ensured

Problem
@ Rollbacks follow epoch=2
causal dependency 5 =
paths ‘ \"‘“ iy

© Logged messages and
checkpoints break ot e L BV;
these paths 1 \m fn;z""'\";; .
© Processes do not roll R W =
back to receive)
orphan messages - T~

@ Processes do not have
enough information to
order causally
dependent messages

17 /29

Application analysis

Uncoordinated checkpoint for send-deterministic MPI

applications

Recovery: Causality Problem
Phase number: Messages in a causal path that is not interrupted by a checkpoint
or a logged messages are in the same phase

o Piggyback phase number on epoch=2
each message PO LA
S b\mo m5
@ checkpoint: increment phase 1‘:\ °

p1 Ly
number \ /ms
102 3\

o logged messages: update R S SN B U —— X
and increment receiver’s O T mé
phase number if smaller e N e W /

@ non-logged message: update pa 2 2 ol —

receiver's phase number

Upon Recovery: Messages sent
according to phase numbers

18 /29

Application analysis

Uncoordinated checkpointing for send-deterministic

applications

Advantages Drawbacks

@ No global rollback @ Global coordination for

@ No domino effect recovery

@ No need to log all messages

o Easy garbage collect

19/29

Performance evaluation

Implementation

Implementation of our prototype in MPICH2:
e Communication management in Nemesis (driver communication device):
o ACK management
o Message logging
e Implementation on TCP and Myrinet 10G
@ Rollback/Recovery management in Hydra (MPICH process manager)
Uncoordinated process checkpointing
Failure detection (processes failure only)
Computation of the set of processes to rollback
Processes restart (ongoing work)

20/29

Performance evaluation
Performance evaluation

@ NetPipe on 2 nodes: evaluation of bandwidth and latency on Myrinet 10G
@ CLASS D NAS Benchmark 3.3 Performance on Myrinet 10G

@ Number of rolled back processes and logged messages on CLASS D NAS
Benchmark on 128 processes

Experimental setup
@ 45 nodes
2 Intel Xeon E5440 QC (4 cores) processors
8 GB of memory
10G-PCIE-8A-C Myri-10G NIC
Linux with kernel 2.6.26

21/29

Performance evaluation

Performance evaluation

Implementation details
@ ACK implementation:
o Small messages (< 1KB):

@ ACK sent only when the message should be logged
@ Messages are copied until the ACK is received

o Big messages: ACK sent for each message

@ Rolled back processes: Offline computation of set of processes to roll back
according to epoch number

22/29

Performance evaluation

Latency and bandwidth

@ Small overhead (15%) for small messages — Management of piggybacked

data
@ Impact of 39% on the bandwidth for big messages — Extra copy of message
01 T T R T T T 10000 T T N T T T
—— mpich —— mpich
——— protocol (no logging) 9000 - protocol (no logging)
0.01 F protocol (logging) 8000 protocol (logging)
"g & 7000 |
J)‘ﬁ 0.001 E= 6000
£ = 5000
Iy 2
2 0.0001 2 4000
& £
3 2 3000 |
1e-05 2000 |
1000
1e-06 1 1 L L L 0 !
1 8 64 1K 64K IM 8M 1 8 64 1K 64K IM 8M
Message Size in Bytes Message Size in Bytes

Figure: Myrinet 10G Ping-Pong Performance

23/29

Performance evaluation

Overhead on failure free execution

@ Almost no impact without logging

o At most 5% overhead when all messages are logged

1.14 T
1.12
1.1
1.08
1.06
1.04
1.02

T
MPICH2
Protocol (no logging) 7272
Protocol (logging) 77777772

7 (7] 1]

BT.D.128 CG.D.128 MG.D.128

Overhead

0.98
0.96

Figure: NAS Performance on Myrinet 10G

24 /29

Performance evaluation

Number of rolled back processes

Evaluation of the number of processes to rollback: almost all processes rollback
@ Random uncoordinated checkpoint is not always the right solution

@ Take communication patterns into account
— processes often communicate with their neighbors

Idea

o Create cluster of processes to limit the numbers of rollback
— Force message logging by using different epochs for different clusters

o Carefully choose clusters to limit the number of logged messages

25/29

Performance evaluation

Process clustering example

Communication Pattern (NPB CG.C.64) o 14
P

60 Ep 12

50 Ep 10

Ep8

40

Ep6

30
Ep4
20
Ep2
1o 120 o

0 10 20 30 40 50 60
Sender Rank

Receiver Rank
Number of Messages

Figure: Communication density graph and clustering in CG

26 /29

Performance evaluation

Number of logged messages and rolled back processes

@ Only a subset of messages are logged

@ Only a subset of processes rollback

@ Small cluster size — few rolled back processes
o Big cluster size — few logged messages

Tradeoff between number of logged messages and number of rolled back processes

Cluster 4 8 16

%log | %rl || %log | %rl || %log | %rl
MG 9.5 62.5 17.1 | 56.3 || 254 | 42.1
LU 10.35 | 62.5 || 24.14 | 56.3 || 25.9 | 42.1
FT 37.3 | 625 || 43.6 56 46.8 53
CG 2.9 62.5 3.4 56.3 15 43.8
BT 13 62.6 25.2 | 56.4 || 36.7 | 53.3

Table: Number of logged messages and rolled back processes according to cluster size on
class D NAS Benchmark for 128 processes

27 /29

Conclusion and future work

Conclusion and future work

Conclusion
@ Presentation of Send-determinism

@ Presentation of an uncoordinated checkpointing protocol using
send-determinism
o No global restart
e Only a subset of logged messages
@ Protocol performance:
o Almost no overhead on latency
e 39% overhead on bandwidth for big logged messages
e Small impact on application performance
@ Clustering solution based on communication pattern:

o Number of rolled back processes approaching 50%
o Small percent of logged messages

28/29

Conclusion and future work

Conclusion and future work

Future work
@ Evaluation of recovery time
@ Further study on the association of send-determinism and clustering

@ Impact of send-determinism on other rollback/recovery protocols

29/29

	Introduction
	Existing Fault Tolerance Protocols
	Application analysis
	Performance evaluation
	Conclusion and future work

