
1

Edgar Gabriel

VolpexMPI: robust execution of 

MPI applications through process 

replication

Edgar Gabriel and Jaspal Subhlok

Department of Computer Science,

University of Houston

Edgar Gabriel

Contributors

• Collaborators: 

– David Anderson (UC Berkeley), 

– Margaret Cheung (UH Physics), 

– Rong Zheng (UH Computer Science)

• Students: 

– VolpexMPI: 

Rakhi Anand, Troy Leblanc 

– Volpex Dataspace: 

Girish Nanadagudi, Eshwar Rohit, Hien Nguyen



2

Edgar Gabriel

Outline

• Introduction and Motivation

• VOLPEX project overview

• VolpexMPI

– design and concept

– performance results on a homogeneous cluster

– target selection problem

– performance results on a ‘heterogeneous’ cluster

• Overview of ongoing work

Edgar Gabriel

Volpex: Parallel Execution on Volatile 

Nodes

• Fault tolerance: why ?

– Node failures on machines with thousands of processors

– Node and communication failure in distributed 
environments

– Very long running applications  

– Security relevant applications

• Volpex Project Goals:

– Execution of communicating parallel programs on volatile 

ordinary desktops

– Key problem: High failure rates AND coordinated 

execution



3

Edgar Gabriel

Major Challenges in VOLPEX

• Failure Management

– Replicated processes

– Independent process checkpoint/recovery

• Programming/Communication Model

– Volpex Dataspace API

– VolpexMPI

• Execution management

– Selection of “good” nodes for execution

– Integration with BOINC/Condor

– Simulation to identify suitable codes (Dimemas)

Edgar Gabriel

The Volpex Approach

Execution Progress

Process 1

Process 2

Process 3
X failed

Process 4

Application

Execution

Front

Replica 1

Replica 2

Redundancy and/or independent checkpoint/restarts 

� multiple physical processes per logical process

Volpex Goals: 

• Application progress tied to the fastest process replica(s) 

• Seamless progress despite failures

• Minimum overhead of redundancy



4

Edgar Gabriel

Dataspace Programming Model

• Independent processes communicate with one way, PUT/GETs

with an abstract dataspace

– Similar to Linda, Javaspaces, Tspaces etc.

PUT (tag, data) place data in dataspace indexed with tag

READ (tag, data) return data matching the tag

GET (tag, data) return and remove data matching tag

• Fault tolerance approach (checkpoint or replication) implies 

redundant processes/execution

�a logical PUT/GET may be executed many times

�a late replica may PUT a value that is out of date

Edgar Gabriel

VolpexMPI

• MPI library for execution of parallel application on volatile 

nodes

• Key features:

– controlled redundancy: each MPI process can have 

multiple replicas

– Receiver based direct communication between processes

– Distributed sender logging

• Prototype implementation supports ~40 MPI functions

– point-to-point operations (blocking and non-blocking)

– collective operations

– communicator management



5

Edgar Gabriel

Point-to-point communication

• Goal: efficient handling of multiple replicas for each 

MPI process

– avoid sending each message to all replicas

• Concept:

– receiver based communication model

• sender buffers message locally

• receiver contacts sender process requesting message

• sequence numbers used for message matching in 

addition to the usual message envelope (tag, 

communicator, sender rank, recv rank)

– no support for MPI_ANY_SOURCE as of today

Edgar Gabriel

Volpex MPI design

• Data transfer based on non-blocking sockets

– supports timeout of messages and connection 

establishment

– handling of failed processes

– adding of new processes at runtime

• Sender buffer management:

– circular buffer containing message envelopes and data

– oldest log-entries are being overwritten

– size of the circular buffer limits as of today ability to 

retrieve previous messages



6

Edgar Gabriel

Managing Replicated MPI processes

• Team based approach:

• Processes are spawned in 

teams

• Only in case of failure, 

processes from different 

team is contacted

• Optimal for homogeneous 

environments

Edgar Gabriel

Bandwidth comparison

• 4 byte latency over Gigabit Ethernet:

– Open MPI v1.4.1: ~50us

– VolpexMPI: ~1.8ms



7

Edgar Gabriel

NAS Parallel Benchmarks

• Normalized execution times of VolpexMPI on a dedicated 

cluster over Gigabit Ethernet

• Open MPI v1.4.1 reference times are 100

Edgar Gabriel

Influence of redundancy level

16 processes

• Performance impact of executing one (x1), two (x2) and (x3) 

replicas of each process

• Normalized to the single redundancy VolpexMPI execution 

times

8 processes



8

Edgar Gabriel

Influence of process failures

8 processes 16 processes

• Double redundancy

• Failing processes from both teams

• Normalized to the double redundancy execution times

Edgar Gabriel

The Target Selection Problem revisited

• Identifying best set of replicas

• Beneficial to connect to fastest replica

• Will make fast replica slow by making it handle more number 

of requests

0

1

1

1

0

0

.....

.....

.....

n-1

n-1

n-1



9

Edgar Gabriel

Target Selection Algorithms

• RO: Response Order Algorithm

• Request a message from all replicas of a given MPI rank

• Target is selected based on response order of replicas

• Regularly repeated during execution

• ERO: Extended Response Order Algorithm

• Same preliminary steps as RO 

• Change to next (slower) target in the list if difference in 

newest sequence number for a particular message exceeds 

a given threshold

Edgar Gabriel 8 processes 16 processes

Target Selection Algorithms (II)
• Double redundancy tests on a heterogeneous configuration

• fast nodes: Gigabit Ethernet, 2.2 GHz

• slow nodes: Fast Ethernet, 1.0 GHz

• Initially, both teams contain  processes on fast and slow nodes

• Each MPI rank has one fast and one slow process

• Normalized towards double redundancy numbers on GE



10

Edgar Gabriel

Beyond volunteer systems

• Experiments over InfiniBand in the planning

– using RDMA Get operation would improve performance

– requires changes in the message logging

• Beyond the MPI API

– Functions to compare values of a variable across replicas

– API allowing to perform operations on a single copy of a 

replica

• e.g. result file written by a single replica of a process

– API allowing to split execution of an operation across all 

replicas

Edgar Gabriel

Summary

• Volpex MPI allows for the seamless handling of multiple 

process replicas of MPI process

– minimal or no performance penalty due to replication

– seamless handling of process failures

– different target selection algorithms for homogeneous 

and heterogeneous environmets

• Application have to carefully chosen for volunteer computing

– communication/computation ratio

– low degree of communication



11

Edgar Gabriel


