Integrating Fault Tolerance into the Monte Carlo Application Toolkit

Rob T. Aulwes Los Alamos National Laboratory CCS-7

UNCLASSIFIED LA-UR 10-06747

Slide 1

Motivation

- Going to exascale means more hardware failures
- Mean Time To Interrupt (MTTI) goes down and checkpoint time goes up
 - Result: more time creating dump files than doing actual work
 - Up to 45 min to create VPIC restart file
 - Larger dumps also mean longer restarts
 - Why abort a 10,000+ processor job just because 1 process failed?

UNCLASSIFIED LA-UR 10-06747

Slide 2

Goals of Project

Raise awareness at LANL for need to address failures

- A large (6000+ PE) cosmology run was attempted, but had difficulties making progress due to multiple failures
- Fault tolerance is now part of discussions about how to prepare for exascale
- Part of Level 2 Milestone
- Press for need of LANL to contribute to developing fault-tolerant OpenMPI

Demonstrate ability to make a production code faulttolerant

Presented to Monte Carlo Codes group

U N C L A S S I F I E D LA-UR 10-06747

Slide 3

The Monte Carlo Application ToolKit (MCATK)

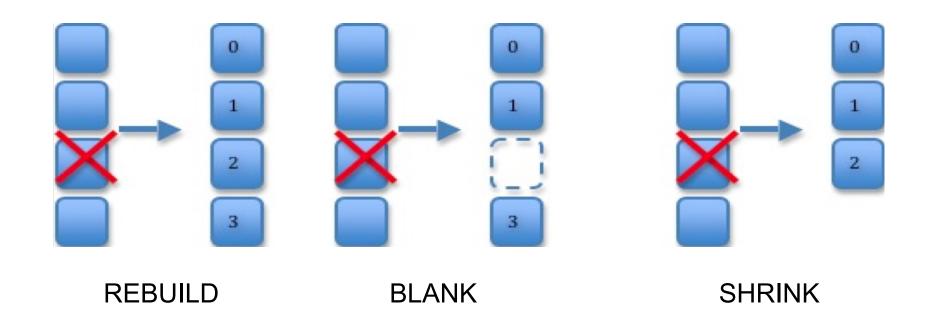
- Two-year-old project to write a parallel Monte Carlo neutron transport code using modern software engineering practices
- Supports domain-replicated, domain-decomposed, hybrid
- Domain-replicated provided easiest model to demonstrate fault tolerance

UNCLASSIFIED LA-UR 10-06747

Slide 4

FT-MPI

- Fault-tolerant MPI from U. of Tennessee
- Extends MPI semantics to include fault tolerance
 - Detect if restarted process
 - Get list of failed ranks
- Provides recovery modes: REBUILD, BLANK, SHRINK
- However, no longer being developed or maintained
- Only made aware of failure through MPI call
- Is not integrated with Totalview



U N C L A S S I F I E D LA-UR 10-06747

Slide 5

Recovery Modes

UNCLASSIFIED LA-UR 10-06747

Slide 6

Boost and MPI

- MCATK uses Boost MPI C++ library
- MPI errors translated to Boost MPI exceptions
- communicators created dynamically and wrapped with shared_ptr
- communicators become invalid after a failure
 - Used Observer design pattern to design notification system
 - Listeners responded to failures and recreated communicators

UNCLASSIFIED LA-UR 10-06747

Slide 7

Fault-tolerant scheme (SHRINK mode)

- Group MPI ranks into local checkpoint groups
- Each rank in group sends its particles to every other rank within group
- On failure, lowest-ranked processor in group takes over particles of all failed processes within group
 - Have load imbalance for only one cycle
- State rolled back to start of failed cycle
- If only 1 PE remaining in group, then abort



U N C L A S S I F I E D LA-UR 10-06747

Slide 8

Local Checkpoint Groups

EST.1943

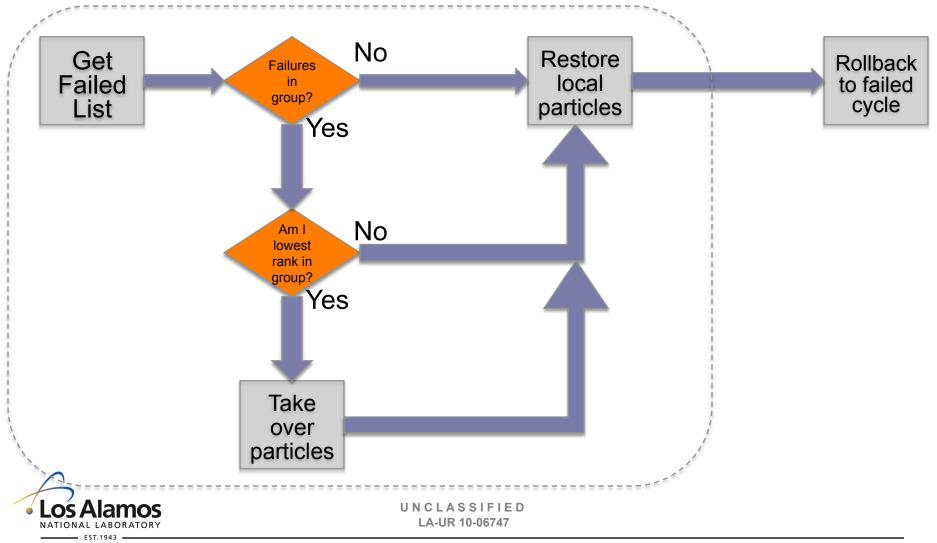
LA-UR 10-06747

Local Checkpointing and Recovery

Particles stored in neighbor's memory

- Obviously, very memory intensive strategy
- However, design allows for storage to local disk as an option
- Future architectures include advances in non-volatile local storage
- Implemented notification system to notify interested objects about failures
 - Needed to update any reference to Boost MPI communicators

Recovery does not complete until no more failures


• Failures also handled if occur during recovery

U N C L A S S I F I E D LA-UR 10-06747

Recovery Logic - SHRINK

Testing

Ran a K-effective calculation on 64 Pes

- K eigenvalue is a measurement of criticality
- Test has reproducible result

Tested multiple types of failures

- Multiple failures
- Simultaneous
- Failures within recovery

However, did experience hangs with some tests

UNCLASSIFIED LA-UR 10-06747

Slide 12

Test Results

•Turing and Yellowrail with 64PEs

# Particles	20 * 64	200 * 64	500 * 64	1000 * 64
no failures	0.998762397	1.00046942	1.00120465	0.999840359
3 failures	0.998762397	1.00046942	1.00120465	app hang
2 simultaneous	0.998762397	1.00046942	1.00120465	0.999840359

UNCLASSIFIED LA-UR 10-06747

Future Work

 Collaborate with current efforts to incorporate FT-MPI features into Open-MPI

Extend to domain-decomposed

Solving domain-decomposed would provide insight to adding fault tolerance to Eulerian codes

Expand effort to other apps at LANL

- Eulerian hydrodynamics
- Radiation transport
- VPIC

U N C L A S S I F I E D LA-UR 10-06747

