

Reliability-Aware Scalability Models for High Performance Computing

Ziming Zheng, Zhiling Lan

Illinois Institute of Technology

10/11/2009

Workshop on HPC Resiliency 2009

1

Scalability model

- Systems are getting bigger and faster
 - 50.2% of high-end systems > 4096 processors [http://www.top500.org]
- Scalability is a key factor for evaluating, predicting and optimizing the performance
- Amdahl's law and Gustafson's law are well-known scalability models
- Both laws implicitly assume that the application can complete without experiencing any failure

Reliability issue

- Failure becomes a commonplace scenario instead of an exception [B. Schroeder DSN 06]
 - Failure rates are more than 1000 per year
 - Failure repair time is up to nearly 100 hours
- Scalability in the presence of failures \neq scalability in the ideal failure-free environments
- Checkpointing (CKP) has been widely used for reliability

Outline

- Extend Amdahl's law and Gustafson's law
 - Considering failures
 - Considering checkpointing
- Assess the models via trace-based simulations
- Use the models to evaluate fast recovery and proactive failure prevention

Assumptions

- The time interval between failures on node *i* is exponentially distributed with an arrival rate of λ_i
- The failure arrival rate of *P* nodes is $\lambda_P = \sum_{i=1}^{P} \lambda_i$ (homogeneous systems $\lambda_P = P\lambda$)
- Repair time follows a general distribution with a mean of μ and is insensitive to P
- One unit of workload takes one unit of time per node

Nomenclature

Р	Number of computing nodes or processes	
λ_i	Failure arrival rate of node i	
λ_P	Failure arrival rate of the P nodes allocated to the application(hour)	
μ	Mean-Time-To-Recover(MTTR) (hour)	
W	Application workload, the application failure-free operation count on a single node	
W'	The scaled workload on a single node	
W_p	The parallel workload	
α	The fraction of the application that can be parallelized	
O_{ckp}	Checkpoint overhead (hour)	
Т	Checkpoint interval (hour)	
S^A	Amdahl's scalability model without checkpointing	
S_{f}^{A}	Agumented Amdahl's scalability model without checkpointing	
$S_{f,c}^{A}$	Agumented Amdahl's scalability model with checkpointing	
SG	Gustafson's scalability model without checkpointing	
S_f^G	Agumented Gustafson's scalability model without checkpointing	
$S_{f,c}{}^G$	Agumented Gustafson's scalability model with checkpointing	

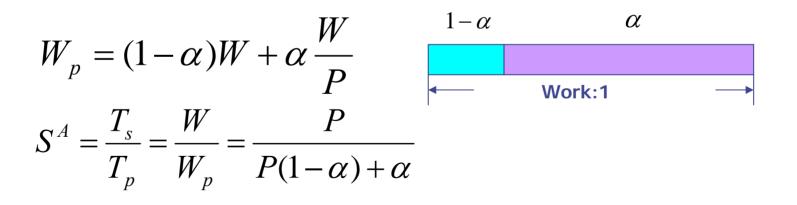
A: Amdahl's model; f: under failure; c: with checkpointing

Workshop on HPC Resiliency 2009

10/11/2009

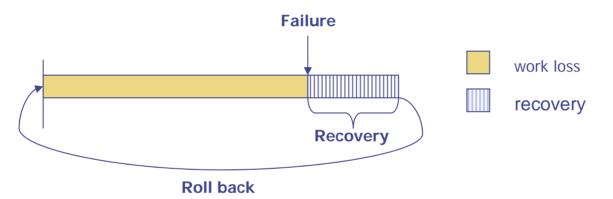
Amdahl's law

- Gene M. Amdahl, "Validity of the Single-Processor Approach to Achieving Large Scale Computing Capabilities", 1967
- Amdahl's law (Amdahl's speedup model)



Agumented Amdahl's model W/O checkpointing

 Without checkpointing, when a failure occurs the application will roll back to the beginning



• Expected time under failure $E(T_f(W_p)) = (\mu + \lambda_P^{-1})(e^{(1-\alpha + \frac{\alpha}{P})\lambda_P W} - 1)$

$$S_f^A = \frac{W}{E(T_f(W_p))} = \frac{W}{(\mu + \lambda_P^{-1})(e^{(1-\alpha + \frac{\alpha}{P})\lambda_P W} - 1)}$$

Workshop on HPC Resiliency 2009

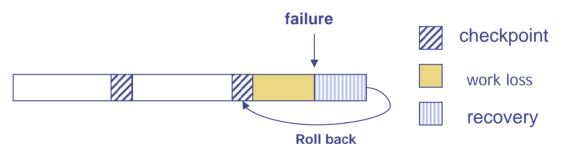
Augmented Amdahl's model W/O checkpointing

♦ S^{A} is a special case of S_{f}^{A} when $\mu = 0, \lambda_{p} = P\lambda, 1/P\lambda >> W_{p}$ $S_{f}^{A} = \frac{W}{(P\lambda)^{-1}(e^{(1-\alpha)P\lambda W}e^{\alpha\lambda W} - 1)}$ $\approx \frac{W}{(P\lambda)^{-1}((1-\alpha)P\lambda W + \alpha\lambda W)}$ $= S^{A}$

- In a failure-prone environment, S_f^A is different from S^A
 - S^A is independent of W
 - S_f^A exponentially decreases with the growth of W
 - Application with high workload is more vulnerable to failures

Augmented Amdahl's model W/ checkpointing

 Upon a failure the application will be restarted from the most recent checkpoint



• Daly's model is adopted to estimate the expected parallel execution time with checkpointing $E(T_{f,c}(W_p))$

$$E(T_{f,c}(W_p)) = \frac{e^{u\lambda_p}}{\lambda_p} (e^{(\tau+O_{ckp})\lambda_p} - 1) \frac{(1-\alpha+\frac{\alpha}{p})W}{\tau}$$
$$\tau = \begin{cases} \sqrt{\frac{2O_{ckp}}{\lambda_p}} [1+\frac{1}{3}(\frac{O_{ckp}\lambda_p}{2})^{1/2} + \frac{1}{9}(\frac{O_{ckp}\lambda_p}{2})] - O_{ckp} & O_{ckp} < \frac{2}{\lambda_p} \\ \frac{1}{\lambda_p} & O_{ckp} \ge \frac{2}{\lambda_p} \end{cases}$$

Workshop on HPC Resiliency 2009

10/11/2009

Augmented Amdahl's model W/ checkpointing

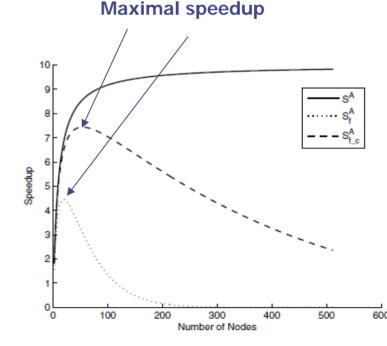
$$S_{f,c}^{A} = \frac{T_{s}}{E(T_{f,c}(W_{p}))} = \frac{W}{\frac{e^{u\lambda_{p}}}{\lambda_{p}}(e^{(\tau+O_{ckp})\lambda_{p}}-1)}\frac{(1-\alpha+\frac{\alpha}{p})W}{\tau}$$
$$= \frac{\lambda_{p}\tau}{e^{\mu\lambda_{p}}(e^{(\tau+O_{ckp})\lambda_{p}}-1)(1-\alpha+\frac{\alpha}{p})}$$

• $S_{f,c}^{A}$ is independent of W

 Checkpointing is helpful to maintain application scalability with high workload

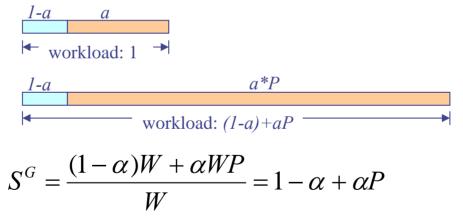
A Use Scenario

- S^A is monotonically increases with the growth of *P*, with an upper bound of $\frac{1}{1-\alpha}$
- S_{f}^{A} and $S_{f,c}^{A}$ may decrease with the growth of P
- Reliability-aware models can
 identify the optimal P
- Checkpointing increases the maximal achievable speedup



Gustafson's law

- ◆ J. Gustafson, "Reevaluating Amdahl's law", 1988
- Fix-time speedup
 - Emphasizes on the amount of workload that can be finished in a fixed time

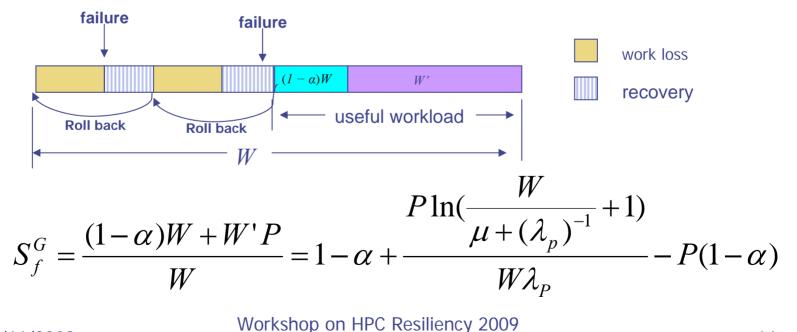


• S^G is independent of W and linearly grows with P.

Workshop on HPC Resiliency 2009

Augmented Gustafson's model W/O checkpointing

- As W increases, the application gets more vulnerable to failures
- \bullet useful workload (per node) = W work loss recovery
- ♦ scaled workload $W' = useful workload (1 \alpha)W$



Workshop on HPC Resiliency 2009

Augmented Gustafson's model W/O checkpointing

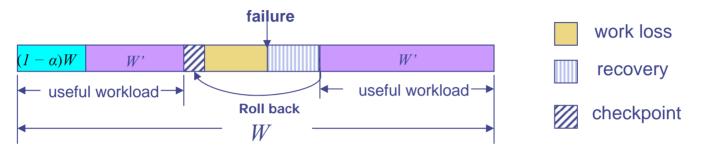
• S^G is a special case of S_f^G when $\mu = 0, \lambda_a = P\lambda, 1/P\lambda >> W$

$$S_{f}^{G} = 1 - \alpha + \frac{P \ln(WP\lambda + 1)}{W\lambda} - P(1 - \alpha)$$
$$\approx 1 - \alpha + \frac{WP\lambda}{W\lambda} - P(1 - \alpha)$$
$$= S^{G}$$

- Without these conditions, S_f^G is different from S^G
 - S^G is independent of W
 - S_f^G decreases with the growth of W
 - work loss and recovery time significantly increase with the growth of W

Augmented Gustafson's model W/ checkpointing

◆ useful workload=*W* − *work loss* − *recovery* − *overhead*



♦ scaled workload $W' = achievable workload - (1 - \alpha)W$

$$S_{f,c}^{G} = \frac{(1-\alpha)W + W'P}{W} = \frac{(1-\alpha)W + (\frac{1}{e^{u\lambda_{p}}(e^{(\tau+O_{ckp})\lambda_{p}}-1)} - (1-\alpha))W}{W}$$
$$= 1-\alpha + \frac{\tau P\lambda_{p}}{e^{u\lambda_{p}}(e^{(\tau+O_{ckp})\lambda_{p}}-1)} - (1-\alpha)P$$
$$\Leftrightarrow S_{f,c}^{G} \text{ is independent of } W$$

A Use Scenario

- S^G scales linearly with the number of nodes P
- S_f^G and $S_{f,c}^G$ are limited by failures and may decrease with the growth of *P*
- Reliability-aware models can
 identify the optimal P
- Checkpoint increases the maximal achievable speedup



Outline

- Extend Amdahl's law and Gustafson's law
 - Considering failures
 - Considering checkpointing
- Assess the models via trace-based simulations
- Use the models to evaluate fast recovery and proactive failure prevention

Evaluation

 Trace-based simulations to compare percentage prediction errors

percentage prediction error = $\frac{prediction - simulation}{simulation}$

- User provides the application-level parameters: workload W and the fraction α
- The system-level parameters are obtained from the trace fed into the simulator
 - The failure trace is from a production system (system #8) at Los Alamos National Lab (128 nodes with similar failure rates)

Augmented vs. Original Amdahl's Models

- Without checkpoint $S^{A}(W/O CKP)$ vs. S_{f}^{A}
 - S_f^A is much more accurate than S^A
 - Further, as W increases the accuracy of S^A decreases dramatically
- With checkpoint $S^{A}(W/CKP)$ vs. $S_{f,c}^{A}$
 - The accuracy of $S_{f,c}^{A}$ outperforms S^{A}

W	S^A (W/O CKP)	S^A (W/ CKP)	S_f^A	$S_{f\underline{c}}^A$
2000	1.99	0.14	0.27	0.09
5000	18.89	0.24	0.73	0.11
8000	20.55	0.16	0.87	0.04
10000	21.98	0.15	0.82	0.04

Percentage prediction errors

Augmented vs. Original Amdahl's Models

• S^A vs. S_f^A and $S_{f,c}^A$ with different α

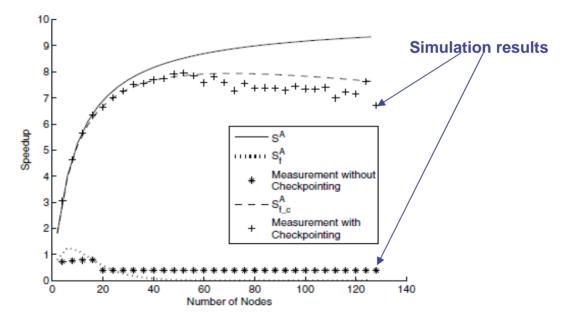
- The accuracy S^A is low when α is small
- Even if α =0.999, application scalability under failures is still distinct from its scalability in the ideal failure-free environments

α	S^A (W/O CKP)	S^A (W/ CKP)	S_f^A	$S_{f_c}^A$
0.7	15.66	0.52	0.95	0.34
0.75	8.73	0.34	0.95	0.19
0.8	10.67	0.28	0.27	0.14
0.9	21.98	0.15	0.82	0.04
0.95	23.83	0.24	0.79	0.10
0.999	3.32	0.07	0.93	0.06

Percentage prediction errors

Augmented vs. Original Amdahl's Models

- Compared to S^A , S_f^A and $S_{f,c}^A$ can better model application scalability in real environments
- The gap between S^A and the actual measurement becomes larger with the growth of P.



Workshop on HPC Resiliency 2009

Augmented vs. Original Gustafson's Models

- Without checkpoint $S^G(W/O CKP)$ vs. S_f^G
 - The useful workload in a failure-present environment is much less than that in an ideal failure-free environment
- With checkpoint $S^G(W CKP)$ vs. $S_{f,c}^G$
 - The useful workload is not achievable as S^G due to the inevitable recovery process, work loss and checkpoint overhead

W	S^G (W/O CKP)	S^G (W/ CKP)	S_f^G	$S_{f_c}^G$
1000	1.32	0.07	0.58	0.05
1200	15.7	0.13	2.3	0.01
1800	29.86	0.14	6.91	0.01
2000	12.71	0.14	2.33	0.01

Percentage prediction errors

Augmented vs. Original Gustafson's Models

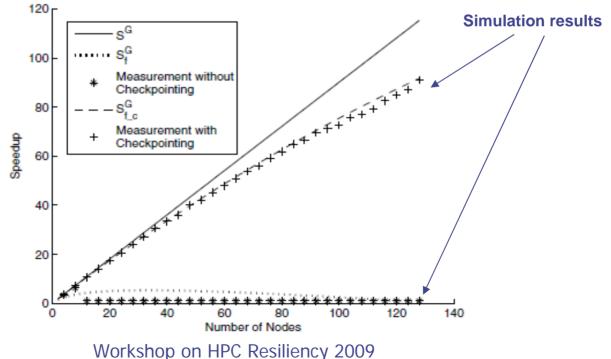
- S^G vs. S_f^G and $S_{f,c}^G$ with different α
 - S_f^G and $S_{f,c}^G$ outperform S^G
 - The error decreases with the growth of α

α	S^G (W/O CKP)	S^G (W/ CKP)	S_f^G	$S_{f_c}^G$
0.7	3.70	0.12	1.43	0.05
0.8	1.9	0.08	0.80	0.06
0.9	1.32	0.07	0.58	0.05
0.95	1.15	0.06	0.51	0.05
0.999	1.01	0.06	0.46	0.05

Percentage prediction errors

Augmented vs. Original Gustafson's Models

- S_{f}^{G} and $S_{f,c}^{G}$ can better represent application scalability
- The gap between S^G and the actual measurement becomes larger with the growth of P

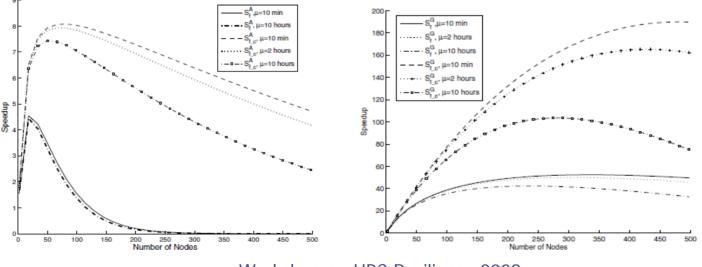


Outline

- Extend Amdahl's law and Gustafson's law
 - Considering failures
 - Considering checkpointing
- Assess the models via trace-based simulations
- Use the models to evaluate fast recovery and proactive failure prevention

Use of the models to assess fast recovery

- Fast recovery can reduce MTTR
 - Without checkpointing, fast recovery can not significantly improve application scalability
 - With checkpointing, fast recovery can significantly improve application scalability



Workshop on HPC Resiliency 2009

10/11/2009

Use of the models to assess failure prediction

- Based on failure prediction, proactive actions can prevent failure experiencing and avoid rollbacks
- Prediction accuracy

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

	Actual Data			
Predicted Result		Fatal	Non- Fatal	
ted R	Positive	ТР	FN	
esult	Negative	FP	TN	

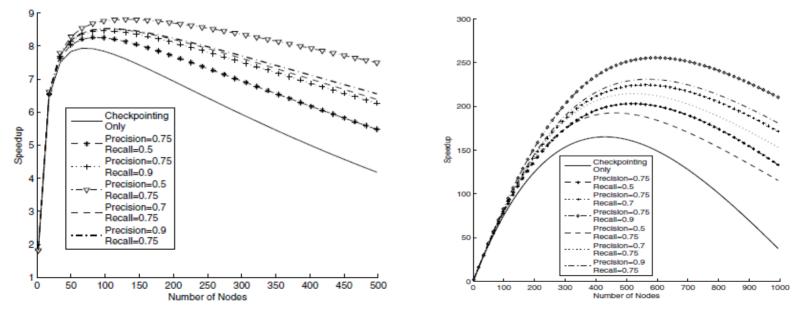
$$\begin{split} S_{f,c,m}^{A} &= \frac{\lambda_{p}(1 - recall)\tau'}{e^{\mu\lambda_{p}(1 - recall)}(e^{(\tau' + O_{ckp})\lambda_{p}(1 - recall)} - 1)(1 - \alpha + \frac{\alpha}{P})(1 + \frac{recall \times 2\lambda_{p}O_{ckp}}{precision})}{S_{f,c,m}^{G} = 1 - \alpha + \frac{P}{\frac{e^{\mu\lambda_{p}(1 - recall)}}{\lambda_{p}(1 - recall)}(e^{(\tau' + O_{ckp})\lambda_{p}(1 - recall)} - 1)\frac{1}{\tau'} + \frac{recall \times 2\lambda_{p}O_{ckp}}{precision}}{-1)\frac{1}{\tau'}} - (1 - \alpha)P \end{split}$$

Workshop on HPC Resiliency 2009

10/11/2009

Use of the models to assess failure prediction

- Recall can not only prevent work loss, but also reduce the frequency of checkpointing
- Precision only reduces unnecessary process migration overhead



Workshop on HPC Resiliency 2009

10/11/2009

Conclusions

- Have derive new reliability-aware scalability models by extending Amdahl's law and Gustafson's law
 - considering failures and fault tolerance techniques
- Trace-based simulations have demonstrated that these models can better represent application scalability in failure-present environments
- The models can be used to demonstrate the benefits of fast recovery and proactive failure prevention via process migration

