

Reliability-Aware Scalability Models for High Performance Computing

Ziming Zheng, Zhiling Lan

Illinois Institute of Technology

¹ Workshop on HPC Resiliency 2009

Scalability model

- ◆ Systems are getting bigger and faster
	- 50.2% of high-end systems > 4096 processors *[http://www.top500.org]*
- ◆ Scalability is a key factor for evaluating, predicting and optimizing the performance
- Amdahl's law and Gustafson's law are well-known scalability models
- ◆ Both laws implicitly assume that the application can complete without experiencing any failure

Reliability issue

- ◆ Failure becomes a commonplace scenario instead of an exception *[B. Schroeder DSN 06]*
	- Failure rates are more than 1000 per year
	- Failure repair time is up to nearly 100 hours

- Scalability in the presence of failures \neq scalability in the ideal failure-free environments
- Checkpointing (CKP) has been widely used for reliability ◈

Outline

- Extend Amdahl's law and Gustafson's law
	- Considering failures
	- **Considering checkpointing**
- ◆ Assess the models via trace-based simulations
- Use the models to evaluate fast recovery and proactive failure prevention

Assumptions

- The time interval between failures on node *i* is exponentially distributed with an arrival rate of *λi*
- The failure arrival rate of P nodes is $\lambda_{\scriptscriptstyle P}$ = \sum (homogeneous systems *λP* ⁼*Pλ*) == *P i* $\lambda_{\scriptscriptstyle P}^{} = \sum \lambda_{\scriptscriptstyle i}^{}$ 1
- Repair time follows a general distribution with a mean of *^µ* and is insensitive *to P*
- ◆ One unit of workload takes one unit of time per node

Nomenclature

A: Amdahl's model; f: under failure; c: with checkpointing

Workshop on HPC Resiliency 2009 10/11/2009 \sim 6

Amdahl's law

- Gene M. Amdahl, "*Validity of the Single-Processor Approach to Achieving Large Scale Computing Capabilities*", 1967
- Amdahl's law (Amdahl's speedup model)

Agumented Amdahl's model W/O checkpointing

◆ Without checkpointing, when a failure occurs the application will roll back to the beginning

Expected time under failure $E(T_f(W_p)) = (\mu + \lambda_P^{-1})(e^{(1-\alpha + \frac{\alpha}{P})\lambda_p W} - 1)$

$$
S_f^A = \frac{W}{E(T_f(W_p))} = \frac{W}{(\mu + \lambda_P^{-1})(e^{(1-\alpha + \frac{\alpha}{P})\lambda_p W} - 1)}
$$

Workshop on HPC Resiliency 2009 10/11/20099 and 2012 and 201

Augmented Amdahl's model W/O checkpointing

 S^A is a special case of S^A_f when $\mu = 0,$ $\lambda_P = P\lambda$, 1/P λ >> W_p S^A *PλW _αλW* $A^A = \frac{W}{(P\lambda)^{-1}(e^{(1-\alpha)P\lambda W}e^{(1-\alpha)P\lambda W})}$ $P\lambda$ ⁻¹((1 - α) $P\lambda$ W + $\alpha\lambda$ W *W* $S_{\epsilon}^{A} = \frac{W}{1 - (1 - v)^{I}}$ $-\alpha$) $P\lambda W +$ $\approx \frac{1}{(P\lambda)^{-1}((1-\alpha)P\lambda W + \alpha\lambda W)}$ $=\overline{\frac{(P\lambda)^{-1}(e^{(1-\alpha)P\lambda W}e^{\alpha\lambda W}-1)}}$

- In a failure-prone environment, S_f^A is different from S^A
	- *SA* is independent of *W*
	- *Sf A* exponentially decreases with the growth of *W*
	- Application with high workload is more vulnerable to failures

Augmented Amdahl's model W/ checkpointing

◆ Upon a failure the application will be restarted from the most recent checkpoint

◆ Daly's model is adopted to estimate the expected parallel execution time with checkpointing $E(T_{f,c}(W_p))$

$$
E(T_{f,c}(W_p)) = \frac{e^{u\lambda_p}}{\lambda_p} (e^{(\tau+O_{ckp})\lambda_p} - 1) \frac{(1-\alpha+\frac{\alpha}{P})W}{\tau}
$$

$$
\tau = \begin{cases} \sqrt{\frac{2O_{ckp}}{\lambda_p}} [1 + \frac{1}{3} (\frac{O_{ckp}\lambda_p}{2})^{1/2} + \frac{1}{9} (\frac{O_{ckp}\lambda_p}{2})] - O_{ckp} & O_{ckp} < \frac{2}{\lambda_p} \\ \frac{1}{\lambda_p} & O_{ckp} \ge \frac{2}{\lambda_p} \end{cases}
$$

Workshop on HPC Resilienc ^y²⁰⁰⁹ 10/11/2009 9 and 10

Augmented Amdahl's model W/ checkpointing

$$
S_{f,c}^{A} = \frac{T_s}{E(T_{f,c}(W_p))} = \frac{\lambda}{\mu}
$$

=
$$
\frac{\lambda_p \tau}{\lambda_p}
$$

=
$$
\frac{\lambda_p \tau}{e^{\mu \lambda_p} (e^{(\tau + O_{ckp})\lambda_p} - 1)(1 - \alpha + \frac{\alpha}{P})}
$$

=
$$
\frac{\lambda_p \tau}{e^{\mu \lambda_p} (e^{(\tau + O_{ckp})\lambda_p} - 1)(1 - \alpha + \frac{\alpha}{P})}
$$

 $S_{\!f\!,c}{}^A$ is independent of W

◆ Checkpointing is helpful to maintain application scalability with high workload

A Use Scenario

- *SA* is monotonically increases with the growth of *P,* with an upper bound of $\frac{1}{1-\alpha}$ 1
- \bullet *S_fA* and *S_{f,c}A* may decrease with the growth of *P*
- ◆ Reliability-aware models can identify the optimal *P*
- ◆ Checkpointing increases the maximal achievable speedup

Gustafson's law

- ◆ J. Gustafson, "Reevaluating Amdahl's law", 1988
- ◆ Fix-time speedup
	- **Emphasizes on the amount of workload that can be** finished in a fixed time

^S^G is independent of *W* and linearly grows with *P*.

Workshop on HPC Resiliency 2009

13

Augmented Gustafson's model W/O checkpointing

- ◆ As *W* increases, the application gets more vulnerable to failures
- *useful workload (per node)* ⁼ *W work loss − recovery*
- scaled workload *W'= useful workload* (*1 [−] ^α*) *W*

Workshop on HPC Resilienc ^y²⁰⁰⁹ 10/11/2009 \sim 14

Augmented Gustafson's model W/O checkpointing

 S^G is a special case of S_f^G when $\mu = 0$, $\lambda_a = P\lambda$, 1/P λ >>W

$$
S_f^G = 1 - \alpha + \frac{P \ln(WP\lambda + 1)}{W\lambda} - P(1 - \alpha)
$$

$$
\approx 1 - \alpha + \frac{WP\lambda}{W\lambda} - P(1 - \alpha)
$$

$$
= S^G
$$

- ◆ Without these conditions, S_f ^G is different from S^G
	- *SG* is independent of *W*
	- S_f^G decreases with the growth of W
	- work loss and recovery time significantly increase with the growth of *W*

Augmented Gustafson's model W/ checkpointing

useful workload=*W − work loss − recovery −overhead*

scaled workload *W'=achievable workload − (1 [−] ^α)W* ◈

$$
S_{f,c}^{G} = \frac{(1-\alpha)W + W'P}{W} = \frac{(1-\alpha)W + (\frac{\tau P \lambda_{P}}{e^{\mu \lambda_{P}} (e^{(\tau + O_{\text{clip}}) \lambda_{P}} - 1)} - (1-\alpha))MP}{W}
$$

= $1 - \alpha + \frac{\tau P \lambda_{P}}{e^{\mu \lambda_{P}} (e^{(\tau + O_{\text{clip}}) \lambda_{P}} - 1)} - (1-\alpha)P$

$$
S_{f,c}^{G}
$$
 is independent of W

A Use Scenario

- ◆ *S^G* scales linearly with the number of nodes *P*
- \bullet S_f^G and $S_{f,c}^G$ are limited by failures and may decrease with the growth of *^P*
- ◆ Reliability-aware models can identify the optimal *P*
- ◆ Checkpoint increases the maximal achievable speedup

Workshop on HPC Resiliency 2009 10/11/200917

Outline

- Extend Amdahl's law and Gustafson's law
	- Considering failures
	- **Considering checkpointing**
- Assess the models via trace-based simulations
- Use the models to evaluate fast recovery and proactive failure prevention

Evaluation

Trace-based simulations to compare percentage prediction errors

simulation prediction = $\frac{prediction - simulation}{1}$

- User provides the application-level parameters: workload *W* and the fraction *α*
- The system-level parameters are obtained from the trace fed into the simulator
	- The failure trace is from a production system (system #8) at Los Alamos National Lab (128 nodes with similar failure rates)

Augmented vs. Original Amdahl's Models

- Without checkpoint $\,S^{A}_{\vphantom{A}}\text{W/O~CKP)}$ vs. $S^{~A}_{\!f}$
	- \blacksquare *S_f^A* is much more accurate than S^A
	- **Further, as** W **increases the accuracy of** S^A **decreases** dramatically
- With checkpoint $S^A(\mathbb{W}/\operatorname{CKP})$ vs. $S_{\!f,c}^{\phantom i\phantom jA}$
	- \blacksquare The accuracy of $S_{\!f\!,c}{}^A$ outperforms S^A

Percentage prediction errors

Augmented vs. Original Amdahl's Models

S^A vs. S^A_f and $S_{f,c}^{,a}$ with different a

- \blacksquare The accuracy $S^{\!\!A}$ is low when α is small
- \blacksquare Even if $\alpha{=}0.999$, application scalability under failures is still distinc t from its scalability in the ideal failure-free environments

Percentage prediction errors

Augmented vs. Original Amdahl's Models

- Compared to S^A , S_f^A and *S_{f,c}^A* can better model application scalability in real environments
- The gap between S^A and the actual measurement becomes larger with the growth of *P*.

Workshop on HPC Resilienc ^y²⁰⁰⁹ 10/11/20099 and 22 and

Augmented vs. Original Gustafson's Models

- Without checkpoint $\ S^G(\rm W/O \ CKP)$ vs. $S_f^{\ G}$
	- The useful workload in a failure-present environment is much less than that in an ideal failure-free environment
- With checkpoint $S^G({\rm W\,CKP})$ vs. $S_{\!f\!,c}{}^G$
	- **The useful workload is not achievable as** S^G **due to the** inevitable recovery process, work loss and checkpoint overhead

Percentage prediction errors

Augmented vs. Original Gustafson's Models

- *S* G vs. S_f^G and $S_{\!f\!,c}^G$ with different α
	- S_f^G and $S_{f,c}^G$ outperform S^G
	- \Box The error decreases with the growth of α

Percentage prediction errors

Augmented vs. Original Gustafson's Models

- S_f^G and $S_{f,c}^{,G}$ can better represent application scalability
- The gap between *S G* and the actual measurement becomes larger with the growth of *P*

Outline

- Extend Amdahl's law and Gustafson's law
	- Considering failures
	- **Considering checkpointing**
- ◆ Assess the models via trace-based simulations
- Use the models to evaluate fast recovery and proactive failure prevention

Use of the models to assess fast recovery

◆ Fast recovery can reduce MTTR

- Without checkpointing, fast recovery can not significantly improve application scalability
- With checkpointing, fast recovery can significantly improve application scalability

 \sim 27

Use of the models to assess failure prediction

- ◆ Based on failure prediction, proactive actions can prevent failure experiencing and avoid rollbacks
- **◆ Prediction accuracy**

$$
precision = \frac{TP}{TP + FP}
$$

$$
recall = \frac{TP}{TP + FN}
$$

$$
S_{f,c,m}^{A} = \frac{\lambda_{p} (1 - recall)\tau^{'} }{e^{\mu \lambda_{p} (1 - recall)} (e^{(\tau + O_{ckp})\lambda_{p} (1 - recall)} - 1)(1 - \alpha + \frac{\alpha}{P})(1 + \frac{recall \times 2\lambda_{p} O_{ckp}}{precision})}
$$
\n
$$
S_{f,c,m}^{G} = 1 - \alpha + \frac{e^{\mu \lambda_{p} (1 - recall)}}{\lambda_{p} (1 - recall)} (e^{(\tau + O_{ckp})\lambda_{p} (1 - recall)} - 1)\frac{1}{\tau} + \frac{recall \times 2\lambda_{p} O_{ckp}}{precision} - (1 - \alpha)P
$$

Workshop on HPC Resilienc ^y²⁰⁰⁹ 10/11/200928

Use of the models to assess failure prediction

- ◆ Recall can not only prevent work loss, but also reduce the frequency of checkpointing
- ◆ Precision only reduces unnecessary process migration overhead

Workshop on HPC Resilienc ^y²⁰⁰⁹ 10/11/200929

Conclusions

- ◆ Have derive new reliability-aware scalability models by extending Amdahl's law and Gustafson's law
	- considering failures and fault tolerance techniques
- Trace-based simulations have demonstrated that these models can better represent application scalability in failure-present environments
- The models can be used to demonstrate the benefits of fast recovery and proactive failure prevention via process migration

Workshop on HPC Resiliency 2009 10/11/2009 31