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Problem Statement

e Trend in HPC: high end systems System # CPUs |MTBF/I, see [20]
(tens of) thousands of processors [~ ,5c1q 8192 65nrs |
— High probability of node failure | ASCIWHITE | 8192 5/40 hrs
MTBF becomes shorter PSC Lemieux | 3016 9.7hrs
— CPU/memory/IO failures Google 15000 | 20 reboots/day

e MPT widely used for scientific apps
— Problem with MPI: no recovery from faults in the standard

e Currently FT exist but...
— not scalable
— right level? (app/process/0OS)
— mostly reactive: process checkpoint/restart [used in DOE labs]
— restart entire job > inefficient if only one/few node(s) fail
— overhead: re-execute some of prior work

— issues: checkpoint at what frequency?
— 100 hr job > +150 hrs for chkpt on Pflop machine (w/o failure) [Philp'©5]



Overview

1. Scalable network overlay (ICS'06)
— track live nodes
— group communication

2. Reactive fault tolerance (IPDPS'07)
— Process virtualization
— Job pause mechanism

3. Proactive fault tolerance (ICS'07, SC'08)
— Process virtualization
— health monitoring
— live migration
— back migration

4. Ongoing work

5. Discussion



(2) Job Pause (Process Virtualization)

e Trends in HPC: high end systems with thousands of processors
— Increased probability of node failure: MTTF becomes shorter

e MPI widely accepted in scientific computing
— But no fault recovery method in MPI standard
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Our Solution: Job-pause Mechanism

e Integrate group communication

— Add/delete nodes

— Detect node failures automatically

e Processes on live nodes remain active (roll back to last checkpoint)
e Only processes on failed nodes dynamically replaced by spares

e resumed from the last checkpoint
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Hence:

—nho restart of entire job
—no staging overhead
—no job requeue penalty
—no MPI runtime restart



Our Design & Implementation — LAM/MPI

Decentralized scalable Membership
and failure detector (ICS'06)

— Radix tree - scalability
— dynamically detects node failures
— NEW: Integrated into lamd

NEW: Decentralized scheduler

— Integrated into lamd

— Periodic coordinated checkpointing
— Node failure > trigger

1. process migration (failed nodes)

2. job-pause (operational nodes)
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New Job Pause Mechanism — LAM/MPI & BLCR

e Operational nodes: Pause

— BLCR: reuse processes

— restore part of state of
process from checkpoint

— LAM: reuse existing
connections

e Failed nodes: Migrate

— Restart on new node from
checkpoint file

— Connect w/ paused tasks
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New Job Pause Mechanism - BLCR
0

Call-back kernel thread:
coordinates user command
process and app. process

(In kernel: dashed lines/boxes)

1. app registers threaded callback

- spawns callback thread
2. thread blocks in kernel

3. pause utility calls ioctl(),
unblocks callback thread
4. All threads complete

callbacks & enter kernel
5. New: All threads restore

part of their states

6. Run regular application
code from restored state
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Process Migration — LAM/MPI

e Change addressing information of migrated process
— in process itself
— inall other processes

e Use node id (not IP) for addressing information

mpirun
e Update addressing information at run time
1. Migrated process tells coordinator
(mpirun) about its new location H am
2. Coordinator broadcasts new location is on n3
3. All processes update their process list ‘;g

X
N0 nl n2 n3

e No change to BLCR for Process Migration
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Job Migration Overhead

e 16 nodes, Lam/MPI + BLCR w/ our extensions
e NAS PB, Class C (IS omitted, run too short)

M Job Pause and Migrate O LAM Reboot [ Job Restart

1

Seconds
S = N W R~ U O 0 0 O O

"EEEEEE

BT CG EP

FT LU MG SP
on 16 nodes

69.6% < job restart + lam reboot
e NO LAM Reboot e Transparent continuation of exec

e No requeue penalty — Less staging overhead
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Contribution (2)

Job-Pause for fault tolerance in HPC

Design generic for any MPI implementation / process C/R
Implemented over LAM-MPT w/ BLCR

Decentralized P2P scalable membership protocol & scheduler
High-performance job-pause for operational nodes

. . . New Approach
Process migration for failed nodes

lambooteepecejfeccdeced
Completely transparent, fast ~ 10 sec. | “O[ ”1" “{l "
mpiruNeepecelsesds
Low overhead: 69.6% < job restart + lam reboot coordinated _ &1 1
— No job requeue overhead checkpoint \L\‘\L\
) failure I
— Less staging cost Sause ~h—g \g
— No LAM Reboot v v
migrate
Suitable for proactive fault tolerance with diskless migration
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(3) Proactive Process-Level Migration

e OS level
— Higher-level encapsulation
— More elegant?

e Process level
— Less data / baggage
— More complex?
— Cheaper?

e Implemented over
— BLCR extensions
— Kernel enhancements (dirty bit tracking in PTEs)
— Add'| LAM/MPT support
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Process Migration with Precopy - BLCR

New process created on
destination node

Precopy: transfer dirty
pages iteratively until:
memory threshold, or
difference threshold, or
overhead threshold

Stopdcopy

Page-table dirty bit scheme:
1. dirty bit of PTE duplicated
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2. kernel-level functions extended to set the duplicated bit w/o

additional overhead



Process Migration w/o Precopy - BLCR

source node destination node
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Live vs. Frozen migration (also for precopy termination conditions):
1. Thresholds, e.g., femperature watermarks,

memory/difference / overhead thresholds

2. Available network bandwidth determined by dynamic monitoring
3. Size of write set

Future work: heuristic algorithm based on these conditions



Speedup

# of nodes
4916 4916 4 8316 4 316 4 8316 4816 4816 481l 4916 4 916

mmm—— | oss-in-speedup g @ B 7]
3.5 == = .

Speedup
J

Normalized to the wall-clock time on 4 nodes for NPB Class C

: the execution time w/ one migration
Aggregate value of +purple portion: execution tfime w/o migration
Purple portion of the bars: the loss in speedup due to migration

FT 0.21 lost-in-speedup: relatively large overhead (8.5 sec) vs. short
run time (150 sec)

e Limit of migration overhead: proportionate to memory footprint,
limited by system hardware
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Page Access Pattern & Iterative Migration
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e Page write patterns are in accord with aggregate amount of
transferred memory

e FT:138/384MB ->1200/4600 pages/.1 second



Process-level vs. Xen Virtualization Migration

e Xen virtualization solution: 14-24 seconds for live migration, 13-14
seconds for frozen migration

- Including a 13 seconds minimum overhead to transfer the entire
memory image of the inactive guest VM (rather than transferring a
subset of the OS image) for the transparency

- 13-24 seconds of prior warning to successfully trigger live process
migration
e Process-level: 2.6-6.5 seconds for live migration, 1-1.9 seconds for
frozen migration

- 1-6.5 seconds of prior warning
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Proactive FT Complements Reactive FT

I.= /2 xT, xTs [T.W.Young Commun. ACM ‘74]
Tc: time interval between checkpoints

Ts: time to save checkpoint information (mean Ts for
BT/CG/FT/LU/SP Class C on 4/8/16 nodes is 23 seconds)

Tf: MTBF, 1.25hrs [I.Philp HPCRI'05]
T.=1/2x23 % (1.25 x 60 x 60) = 455

70% faults [R.Sahoo et.al KDD ‘03] can be predicted and handled
proactively

I. = \/2 % 23 x (1.25/(1 = 0.7) x 60 x 60) = 831

Cut the number of chkpts in half: 455->831 seconds

Future work: use 1. better fault model 2. Ts/Tf on bigger cluster
to measure the complementation
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Incremental Checkpointing

1000
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Diff since last chkpt

BLCR enhancement

Reuse dirty bit at PTE
Hybrid: 1 full, k incr. Chkpts
Model savings [Nakisanehaboon et al.]
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Back Migration

Node fails > migrate
Node recovers -> migrate back
Why?

— Heterogeneous nodes

— MPI task sharing on nodes

— Increased hop counts (’for‘US)160

Experiments
— slower spare nodes:
CPU fregq. nearly cut in half
Benefits
— Much less chkpt overhead
— Reduced IO bandwidth
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Contributions (3)

e Novel, proactive FT scheme w/ process virtualization
e Provides transparent & automatic FT for arbitrary MPI apps
e Less overhead than reactive
e Also complements reactive > lower checkpoint frequency
e Process-level: ¥ overhead of OS-level
e 3 the chkpts when 70% faults handled proactively
e Incr. Chkpt - less overhead and I/O pressure

e Back migration - original balance / performance
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(4) Current BLCR Efforts

e Collaboration w/ Paul Hargrove (LBL)

e Upcoming FT features in BLCR:
—Job Pause/Rollback - merged into V0.8.0, next BLCR release
— Incremental checkpoints - in progress
- Dirty vs. write-protect bits
- Challenges: copy-on-write (fork), mprotect, map/unmap
- Assess overheads of alternatives
—Differential checkpoints 2> next release
—Region-delimited checkpoints (semi-transparent) > next rel.
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Contributions

1. Scalable network overlay (ICS'06)
— track live nodes
— group communication

2. Reactive fault tolerance (IPDPS'07)
— Process virtualization
— Job pause mechanism

3. Proactive fault tolerance (ICS'07, SC'08)
— OS/process virtualization
— health monitoring
— live migration
— back migration
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Discussion

Need studies on potential to detect health
deterioration

Need CS cluster resources w/ root access for
scaling => virtualization

— Later production deployment

Job scheduler support for FT

— Spare node pooling
Chkpt PFS and I/O requirements
Anomaly detection / threshold derivation

— In nrooress: transnarent fanlt detector for MPI




Discussion (cont.)

e MPI wish list:

— Coordinated checkpointing:

— MPI_QUIESCE_START/END(comm, info) 2 drain comm. Qs
-Low-level control, MPI integrated
-'h‘r‘rps://svn.mpi-for'um.or'g/‘rr'ac/mpi-forum-web/wiki/Quiescence

— MPI_CHKPT(bool force) - optional trigger
-Higher-level abstraction
-User/runtime defined, opt. MPT integrated

— Just like MVAPICH2 Sync Checkpoint();

e Checkpt in no more than m / every m minutes
— MPI_NEXT_CHKPT(struct timespec abstime)
— MPI_CHKPT_FREQ(struct timespec reltime)
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