Transparent Process-level Fault Tolerance
for MPI: Challenges and Solutions

Frank Mueller
Dept. of Computer Science

NC STATE UNIVERSITY

Department of Computer Science

Problem Statement

e Trend in HPC: high end systems System # CPUs |MTBF/I, see [20]
(tens of) thousands of processors [~ ,5c1q 8192 65nrs |
— High probability of node failure | ASCIWHITE | 8192 5/40 hrs
MTBF becomes shorter PSC Lemieux | 3016 9.7hrs
— CPU/memory/IO failures Google 15000 | 20 reboots/day

e MPT widely used for scientific apps
— Problem with MPI: no recovery from faults in the standard

e Currently FT exist but...
— not scalable
— right level? (app/process/0OS)
— mostly reactive: process checkpoint/restart [used in DOE labs]
— restart entire job > inefficient if only one/few node(s) fail
— overhead: re-execute some of prior work

— issues: checkpoint at what frequency?
— 100 hr job > +150 hrs for chkpt on Pflop machine (w/o failure) [Philp'©5]

Overview

1. Scalable network overlay (ICS'06)
— track live nodes
— group communication

2. Reactive fault tolerance (IPDPS'07)
— Process virtualization
— Job pause mechanism

3. Proactive fault tolerance (ICS'07, SC'08)
— Process virtualization
— health monitoring
— live migration
— back migration

4. Ongoing work

5. Discussion

(2) Job Pause (Process Virtualization)

e Trends in HPC: high end systems with thousands of processors
— Increased probability of node failure: MTTF becomes shorter

e MPI widely accepted in scientific computing
— But no fault recovery method in MPI standard

Today sMPIJobC/R ~ ® Extensions to MPI for FT exist but...
lambooteepeeepeadse — Cannot dynamically add/delete nodes
~ nop iy on2 transparently at runtime
TR T™ — Must restart
dinated .
(z:?\%rclgiiit §----C —MPI runtime
. —Entire job
failure o . .
o ¥V » Inefficient if only one/few node(s) fail
lam reboot--ﬂ---.,,_,,, -Staging overhead
noj n » Requeuing penalty

n2
restart = 0@— ‘I'QD— %ﬂ .

Our Solution: Job-pause Mechanism

e Integrate group communication

— Add/delete nodes

— Detect node failures automatically

e Processes on live nodes remain active (roll back to last checkpoint)
e Only processes on failed nodes dynamically replaced by spares

e resumed from the last checkpoint

Old Approach

n0
mpirun =«

Iamboot booalse
n0| n1] n2 lamboote e
mpirun ==

coordinated

checkpoint ! 2 coordinated
J' checkpoint

failure _ \L
\!’ \y failure

New Approach

n1" ni n3

1 2

new

paus
lam reboot eec ecepocape
n0| n1| n2

restart —0@— @—2@

N
L INY

Vv 9

migrate

Hence:

—nho restart of entire job
—no staging overhead
—no job requeue penalty
—no MPI runtime restart

Our Design & Implementation — LAM/MPI

Decentralized scalable Membership
and failure detector (ICS'06)

— Radix tree - scalability
— dynamically detects node failures
— NEW: Integrated into lamd

NEW: Decentralized scheduler

— Integrated into lamd

— Periodic coordinated checkpointing
— Node failure > trigger

1. process migration (failed nodes)

2. job-pause (operational nodes)

Node 0

mpirun } o e

lamd

ncw

schedulerd
]

TCP
socket

out-of-band

. communication

. channel

Node 1

lamd

Nncw

schedulerd

10

New Job Pause Mechanism — LAM/MPI & BLCR

e Operational nodes: Pause

— BLCR: reuse processes

— restore part of state of
process from checkpoint

— LAM: reuse existing
connections

e Failed nodes: Migrate

— Restart on new node from
checkpoint file

— Connect w/ paused tasks

live node

paused MPI
process ‘
|

existing
connection

live node

paused MP\I\
process

failed

failed node

failed MPI
process

failed'

new connection

]

parallel file system

process
migration
%Qr-
%

migrated
MPI process

spare node

New Job Pause Mechanism - BLCR
0

Call-back kernel thread:
coordinates user command
process and app. process

(In kernel: dashed lines/boxes)

1. app registers threaded callback

- spawns callback thread
2. thread blocks in kernel

3. pause utility calls ioctl(),
unblocks callback thread
4. All threads complete

callbacks & enter kernel
5. New: All threads restore

part of their states

6. Run regular application
code from restored state

@ thread2
) il SN
\) \) v | handler thr "

N ————— running normally '

___________ P\ blocked in 1oct

+ Pause_req()
[]

unblocks
handler thr

Stlll running normiy ‘ run handle functions

other work receives signal, runs handlerss 51gna1 other threads
and ioctl)
o
I | barrier

shared resource

-
(]

lﬁrst thread restores I

: i registers/signals
1 block i . .
! ! registers/signals
[)]
i E ‘re g/sig
: i
: i | barri
; ' arrier
cleanup - mark checkpoint as complete
lecccccccccccceaaad! g h cam— oS TS

o
;) [
continue normal execution lblock in ioct

——

) -

Process Migration — LAM/MPI

e Change addressing information of migrated process
— in process itself
— inall other processes

e Use node id (not IP) for addressing information

mpirun
e Update addressing information at run time
1. Migrated process tells coordinator
(mpirun) about its new location H am
2. Coordinator broadcasts new location is on n3
3. All processes update their process list ‘;g

X
N0 nl n2 n3

e No change to BLCR for Process Migration

13

Job Migration Overhead

e 16 nodes, Lam/MPI + BLCR w/ our extensions
e NAS PB, Class C (IS omitted, run too short)

M Job Pause and Migrate O LAM Reboot [Job Restart

1

Seconds
S = N W R~ U O 0 0 O O

"EEEEEE

BT CG EP

FT LU MG SP
on 16 nodes

69.6% < job restart + lam reboot
e NO LAM Reboot e Transparent continuation of exec

e No requeue penalty — Less staging overhead

14

Contribution (2)

Job-Pause for fault tolerance in HPC

Design generic for any MPI implementation / process C/R
Implemented over LAM-MPT w/ BLCR

Decentralized P2P scalable membership protocol & scheduler
High-performance job-pause for operational nodes

. . . New Approach
Process migration for failed nodes

lambooteepecejfeccdeced
Completely transparent, fast ~ 10 sec. | “O[”1" “{l "
mpiruNeepecelsesds
Low overhead: 69.6% < job restart + lam reboot coordinated _ &1 1
— No job requeue overhead checkpoint \L\‘\L\
) failure I
— Less staging cost Sause ~h—g \g
— No LAM Reboot v v
migrate
Suitable for proactive fault tolerance with diskless migration

15

(3) Proactive Process-Level Migration

e OS level
— Higher-level encapsulation
— More elegant?

e Process level
— Less data / baggage
— More complex?
— Cheaper?

e Implemented over
— BLCR extensions
— Kernel enhancements (dirty bit tracking in PTEs)
— Add'| LAM/MPT support

23

Process Migration with Precopy - BLCR

New process created on
destination node

Precopy: transfer dirty
pages iteratively until:
memory threshold, or
difference threshold, or
overhead threshold

Stopdcopy

Page-table dirty bit scheme:
1. dirty bit of PTE duplicated

source node destination node
| threadl | | thread2 | | threadl | | thread2 |
12'%

%6y Y Q"Ccccchocccccndcce .
precopy ' ‘ barrier ‘ :
thread : H
’ [}
’ [}
v v . . : receives pages :
running normally transfer all first iteration 0 and save Fo :
non-zero pages of precopy] corre spondmg M
: memory :

[]
i 1 . [}
wotis —Cptnton p :
\/ \/ dirty pages —\J Lp pages H
0 ‘ barrier ‘ 0 ’ 0
0 [} » [}
0 () » [)
o 0 H 0
: : S :

[} [] save ages
0 transfer dirty pages [[] "y pag H
] . Sonal) 3 - restore 0
o registerdsignals 0 stop © » registerssignals 0
: transfer U ’ restore :
0 registers/signals : : registers/signals:
[] (]

o 0 : 0
: ‘ barrier ‘ : : ‘ barrier :
L {] leosscssssscsssssssss J

stop

normal execution

(In kernel: dashed lines/boxes)

2. kernel-level functions extended to set the duplicated bit w/o

additional overhead

Process Migration w/o Precopy - BLCR

source node destination node
threadl thread2 threadl thread2

"'* -------- t .-..-. e ccees t * sass,
[i .

s barrier : : barrier :
) 0 0 0
[0 0 '
:] 0 ’
¢ transfer all non- : :receives pages and save to :
§ zero pages, ' Py corresponding memory,]
: registers/signals : stop© : restore registergsignals :
M ' transfer . * p restore 0
: registers/signals : : registers/signals :
L] ®]
[- :) : v |
e barrier] 0 barrier '
; : : I
.-.------.--.--.--. -

* * * normal execution *

stop

Live vs. Frozen migration (also for precopy termination conditions):
1. Thresholds, e.g., femperature watermarks,

memory/difference / overhead thresholds

2. Available network bandwidth determined by dynamic monitoring
3. Size of write set

Future work: heuristic algorithm based on these conditions

Speedup

of nodes
4916 4916 4 8316 4 316 4 8316 4816 4816 481l 4916 4 916

mmm—— | oss-in-speedup g @ B 7]
3.5 == = .

Speedup
J

Normalized to the wall-clock time on 4 nodes for NPB Class C

: the execution time w/ one migration
Aggregate value of +purple portion: execution tfime w/o migration
Purple portion of the bars: the loss in speedup due to migration

FT 0.21 lost-in-speedup: relatively large overhead (8.5 sec) vs. short
run time (150 sec)

e Limit of migration overhead: proportionate to memory footprint,
limited by system hardware

26

Page Access Pattern & Iterative Migration

— 25000 + 246.2) N
E ' ! b = Memory dirtied during
g this iteration
—_ 20000 | - = 3 Memory transferred
= &
§ o)
5 =3
o 15000 | Y
e ®
\% f- + Lt + -é"l 196
P 10000 k' + LobF . o | r—i_#*—; + 3
= ;o o AN & 87.6
a- -+ : B
2 . | . . & 64.4
= L= o L b o e b o I 4o 4 = ’ 448.6MB| 384.4MB 384.4MB 384.4MB| 384.4MB|
T M EnrrrrrErrefrrrr e =
- + . + i N + + H I*"‘ Fo + "+
] + , + N ! Lo > >
2) « ﬁ,ﬁgﬁ*?ﬁ,ﬁﬁﬁﬁ*ﬁ%*ﬁ%ﬁﬁ . 136.2MB—> [138.3MB- 142.5MB|
30 60 90 120 0 6.96 12.93 15.04 21.01 23.16 29.12 35.09 37.03

Elapsed time (seconds)
Elapsed time (seconds)

Page access pattern of FT [terative live migration of FT

e Page write patterns are in accord with aggregate amount of
transferred memory

e FT:138/384MB ->1200/4600 pages/.1 second

Process-level vs. Xen Virtualization Migration

e Xen virtualization solution: 14-24 seconds for live migration, 13-14
seconds for frozen migration

- Including a 13 seconds minimum overhead to transfer the entire
memory image of the inactive guest VM (rather than transferring a
subset of the OS image) for the transparency

- 13-24 seconds of prior warning to successfully trigger live process
migration
e Process-level: 2.6-6.5 seconds for live migration, 1-1.9 seconds for
frozen migration

- 1-6.5 seconds of prior warning

28

Proactive FT Complements Reactive FT

I.= /2 xT, xTs [T.W.Young Commun. ACM ‘74]
Tc: time interval between checkpoints

Ts: time to save checkpoint information (mean Ts for
BT/CG/FT/LU/SP Class C on 4/8/16 nodes is 23 seconds)

Tf: MTBF, 1.25hrs [I.Philp HPCRI'05]
T.=1/2x23 % (1.25 x 60 x 60) = 455

70% faults [R.Sahoo et.al KDD ‘03] can be predicted and handled
proactively

I. = \/2 % 23 x (1.25/(1 = 0.7) x 60 x 60) = 831

Cut the number of chkpts in half: 455->831 seconds

Future work: use 1. better fault model 2. Ts/Tf on bigger cluster
to measure the complementation

29

Incremental Checkpointing

1000

100

10

Savings (seconds)

Diff since last chkpt

BLCR enhancement

Reuse dirty bit at PTE
Hybrid: 1 full, k incr. Chkpts
Model savings [Nakisanehaboon et al.]

=+ CG.D
===SP.D
—£—BT.D

mpiBLAS'T

==1.U.D
=«=CG.C
==FT.C
--BT.C
—=-MG.D
——LU.C
—a—SP.C

Nodes
lambOOtﬁbrnT-ﬁ{lz.né.
mpiruNe=gesspes
full chkpt (: (I) (-)
full chkpt = @)e = (1 = =(1
full chkpt :g 5 5
full chkpt 3I g . g
full chkpt_ J l ‘I,

failure ﬂT- v
Y

lamboot==

.

el

restart == 4@- 4@- 4@

Number of incremental checkpoints between two full checkpoints

(a) OId Full C/R
Fig. 1: Hybrid Full/Incremental C/R Mechanism vs. Full C/R

lamboOteebe=e ---
mpirtuNespeeeh e ==

full chkpt = €0« = 0

St

B « f- -

N incr chkpt-'CF--dR

incr chkpt=
incr chkpt=
full chkpt=

Nodes

no| ni

o

-@-
l
|

7 failure

Iamboot--j'--- caa

restart e 1@

Yoy

7

Y

(b) New Full/Incr C/R

Back Migration

Node fails > migrate
Node recovers -> migrate back
Why?

— Heterogeneous nodes

— MPI task sharing on nodes

— Increased hop counts (’for‘US)160

Experiments
— slower spare nodes:
CPU fregq. nearly cut in half
Benefits
— Much less chkpt overhead
— Reduced IO bandwidth

_ =
[N
(e)

100

Savings by Back Migration (Seconds)

——FT.C.16
==BT.C.16
—-—CG.C.16

—><LU.C.16
——SP.C.16

10 100

Time Steps of the Benchmarks Remained

31

1000

Contributions (3)

e Novel, proactive FT scheme w/ process virtualization
e Provides transparent & automatic FT for arbitrary MPI apps
e Less overhead than reactive
e Also complements reactive > lower checkpoint frequency
e Process-level: ¥ overhead of OS-level
e 3 the chkpts when 70% faults handled proactively
e Incr. Chkpt - less overhead and I/O pressure

e Back migration - original balance / performance

32

(4) Current BLCR Efforts

e Collaboration w/ Paul Hargrove (LBL)

e Upcoming FT features in BLCR:
—Job Pause/Rollback - merged into V0.8.0, next BLCR release
— Incremental checkpoints - in progress
- Dirty vs. write-protect bits
- Challenges: copy-on-write (fork), mprotect, map/unmap
- Assess overheads of alternatives
—Differential checkpoints 2> next release
—Region-delimited checkpoints (semi-transparent) > next rel.

33

Contributions

1. Scalable network overlay (ICS'06)
— track live nodes
— group communication

2. Reactive fault tolerance (IPDPS'07)
— Process virtualization
— Job pause mechanism

3. Proactive fault tolerance (ICS'07, SC'08)
— OS/process virtualization
— health monitoring
— live migration
— back migration

34

Discussion

Need studies on potential to detect health
deterioration

Need CS cluster resources w/ root access for
scaling => virtualization

— Later production deployment

Job scheduler support for FT

— Spare node pooling
Chkpt PFS and I/O requirements
Anomaly detection / threshold derivation

— In nrooress: transnarent fanlt detector for MPI

Discussion (cont.)

e MPI wish list:

— Coordinated checkpointing:

— MPI_QUIESCE_START/END(comm, info) 2 drain comm. Qs
-Low-level control, MPI integrated
-'h‘r‘rps://svn.mpi-for'um.or'g/‘rr'ac/mpi-forum-web/wiki/Quiescence

— MPI_CHKPT(bool force) - optional trigger
-Higher-level abstraction
-User/runtime defined, opt. MPT integrated

— Just like MVAPICH2 Sync Checkpoint();

e Checkpt in no more than m / every m minutes
— MPI_NEXT_CHKPT(struct timespec abstime)
— MPI_CHKPT_FREQ(struct timespec reltime)

36

Acknowledgement

Supp. in part by DOE/NFS grants, Humboldt fellowship

DOE DE-F602-05ER25664 and DE-FG02-08ER25837, NFS CCR-0237570, CNS-0410203, CCF-0429653

! -

@ NCSU students
eJyothish Varma

‘ / eArun Nagarajan
6 / eChao Wang (ORNL)
=2 ¢Manav Vasavada
OAK e ORNL collaborators

RIDGE eChristian Engelmann

National Laboratory oSTephen L. Scott

~

r:;}I ||ﬁ' LBL collaborators
ePaul Hargrove i

