
Performance Measures x.x, x.x, and x.x

Overview of the
Scalable Checkpoint / Restart (SCR) LibraryScalable Checkpoint / Restart (SCR) Library

Wednesday, October 14, 2009

Adam Moody
moody20@llnl.gov

Lawrence Livermore National Laboratory

S&T Principal Directorate - Computation Directorate

moody20@llnl.gov

This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Background

Livermore has many applications which run at large
scale for long times, so failures are a concern.g ,

Even on a failure-free machine, running jobs are
routinely interrupted at the end of 12 hour time slice y p
windows.

To deal with failures and time slice windows, ,
applications periodically write out checkpoint files from
which they restart (a.k.a. restart dumps).

Typically, these checkpoints are coordinated, and they
are written as a file-per-process or they can be
configured to be so.

2
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

Motivation

During the early days of Atlas, before certain hardware
and software bugs were worked out of the system, it g y ,
was necessary to checkpoint large jobs frequently to
make progress.

A checkpoint of pf3d on 4096 processes (512 nodes) of
Atlas typically took 20 minutes and could be as high as
40 minutes costly, so configured run to checkpoint
every 2 hoursevery 2 hours.

However, the mean time before failure was only about 4
hours and many runs failed before writing a checkpointhours, and many runs failed before writing a checkpoint

lots of lost time.

3
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

Motivation (cont.)

Observations:
• Only need the most recent checkpoint data.y p
• Typically just a single node failed at a time.

Idea:Idea:
• Store checkpoint data redundantly on compute cluster;

only write it to the parallel file system upon a failure.

This approach can use the full network and
parallelism of the job’s compute resources to cache
checkpoint data.p
• With 1GB/s links, a 1024-node job has 1024GB/s bandwidth.
• Compares to ~10-20GB/s from parallel file system.

4
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

Avoids two problems

Compute nodes

Atlas

Bottlenecking and network
contention

Gateway nodes

A
tla

s
Contention with other

clusters for file system

ZeusHera

5
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

Parallel File System

Implementation overview

Design
• Cache checkpoint data in files on storage on the compute nodes.
• Run commands after job to flush latest checkpoint to the parallel file

system.
• Define a simple, portable API to integrate around an application’s

existing checkpoint code.

Advantages
• Perfectly scalable each compute node adds another storage resource.
• Files persist beyond application processes, so no need to modify how MPI p y pp p , y

library deals with process failure.
• Same file format and file name application currently uses, so little impact to

application logic.

Disadvantages
• Only storage available on some systems is RAM disc, for which checkpoint

files will consume main memory.
• Nodes may fail, so need to store files redundantly.

S tibl t t t hi f il d t it t ll l fil t

6
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

• Susceptible to catastrophic failure, so need to write to parallel file system
occasionally.

Partner-copy redundancy

0 1 2 3MPI processes

0 1 2 3Write checkpoint file
locally on node

3 0 1 2
Copy checkpoint file

to a partner node

Nodes

7
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

Partner summary

Can withstand multiple failures, so long as a
node and its partner do not fail simultaneouslynode and its partner do not fail simultaneously.

But… it uses a lot of memory.y
• For a checkpoint file of B bytes, requires 2*B

storage, which must fit in memory (RAM disc) along
with application working set.

8
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

Reducing storage footprint

Partner worked well and was used during the Atlas
DATs starting in late 2007.g

Application working sets required more of main
memory by mid-2008.memory by mid 2008.

Motivated XOR scheme (like RAID-5):
• Compute XOR file from a set of checkpoints files from• Compute XOR file from a set of checkpoints files from

different nodes.
• In a failure, can recover any file in the set using XOR file and

remaining N-1 files.
• Similar to: William Gropp, Robert Ross, and Neill Miller.

“Providing Efficient I/O Redundancy in MPI Environments”,
In Lecture Notes in Computer Science, 3241:77–86,
September 2004. 11th European PVM/MPI Users’ Group.

9
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

p p p

XOR redundancy (similar to RAID5)

10
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

XOR redundancy (cont)

Break nodes for job into smaller sets, and
execute XOR reduce scatter within each set.

Can withstand multiple failures so long as two
nodes in the same set do not failnodes in the same set do not fail
simultaneously.

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

N

N

Set 0 Set 1 Set 2

11
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

XOR summary

If a checkpoint file is B bytes, requires B+B/(N-1),
where N is the size of the XOR set.where N is the size of the XOR set.
• With Partner, we need 2 full copies of each file.
• With XOR, we need 1 full copy + some fraction.

But… it may take longer.
• Requires more time (or effort) to recover files upon a failure.

Sli htl l h k i t ti th P t RAM di• Slightly slower checkpoint time than Partner on RAM disc
(additional computation).

• XOR can be faster if storage is slow, e.g., hard drives, where
drive bandwidth is the bottleneck.

12
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

Benchmark checkpoint times

10000

1000
1 TB/s

10

100

G
B/
s

10 GB/s

1

10

SCR Local (on Atlas)
SCR Partner (on Atlas)

0.1

4 8 16 32 64 128 256 512 1094 2048

Number of Nodes

SCR XOR (on Atlas)
Lustre (on Thunder)

13
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

Number of Nodes

pf3d minimum checkpoint times for 4096 processes

Machine Nodes Lustre time SCR timeMachine
& lscratch

Nodes
& Data

Lustre time
& BW

SCR time
& BW Speedup

Juno 256 nodes 175 s 13.7 s
/p/lscratch3 1.88 TB 10.7 GB/s 140 GB/s 13x

Hera
/ /l t h

256 nodes
2 07 TB

300 s
7 07 GB/

15.4 s
138 GB/ 19/p/lscratchc 2.07 TB 7.07 GB/s 138 GB/s 19x

Coastal
/p/lscratchb

512 nodes
2 15 TB

392 s
5 62 GB/s

5.80 s
380 GB/s 68x/p/lscratchb 2.15 TB 5.62 GB/s 380 GB/s 68x

14
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

Scalable restart

The commands that run after a job to copy the
checkpoint files to the parallel file system rebuild lostcheckpoint files to the parallel file system rebuild lost
files after a failure so long as the redundancy scheme
holds. This enables one to restart from the parallel
file system after a failure.

However, in many cases, just a single node fails,
there is still time left in the job allocation, and all of
th h k i t fil till h d th l tthe checkpoint files are still cached on the cluster.

Wouldn’t it be slick if we could just bring in a spare j g p
node, rebuild any missing files, and restart the job in
the same allocation without having to write out and
read in the files via the parallel file system?

15
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

Partner scalable restart

0 1 2 3 S

Run job with spare node S.
0 1 2 3

3 0 1 2

Job stores checkpoint.

0

0

1 2

1

3

2 3Node dies.

Relaunch with spare.

3 0 1 2

0 1 2 3

Distribute files to new rank mapping.

0

0

1

1

2

2 3

3

0 1 23

Rebuild redundancy.

Continue run.

16
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

0 1 23

XOR scalable restart

17
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

Value of scalable restart

Consider three configurations of the same application
• Without SCR

− 20 min checkpoint to parallel file system every 200 minutes
for an overhead of 10%

With SCR (using only scalable checkpoints)• With SCR (using only scalable checkpoints)
− 20 sec checkpoint to SCR every 15 minutes for an

overhead of 5%

• With SCR (using scalable checkpoint s and scalable restarts)
− Checkpoint same as above, 30 sec file rebuild time

Assume the run hits a node failure half way between checkpoints,
and assume it takes the system 5 minutes to detect the failure.

How long does it take to get back to the same point in the

18
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

How long does it take to get back to the same point in the
computation in each case?

Value of scalable restart (cont)

SCR SCR
Without

SCR
(checkpoint

only)
(checkpoint

& restart)

Time for system toTime for system to
detect the failure 5 min 5 min 5 min

20 min
20 min write

+ 20 min

Time to read checkpoint
files during restart

20 min
read from

parallel file
system

+ 20 min
read via

parallel file
system

0.5 min
SCR rebuild

g y y

Lost compute time
that must be made up 100 min 7.5 min 7.5 min

Total time lost 125 min 52 5 min 13 min

19
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

S&T Principal Directorate - Computation Directorate

Total time lost 125 min 52.5 min 13 min

The SCR API

// Include the SCR header
#include “scr.h”

// Start up SCR (do this just after MPI_Init)
SCR_Init();

// ask SCR whether a checkpoint should be taken
SCR_Need_checkpoint(&flag);

// tell SCR that a new checkpoint is starting
SCR_Start_checkpoint();

// register file as part of checkpoint and / or
// get path to open a checkpoint file
SCR_Route_file(name , file);

// tell SCR that the current checkpoint has completed
SCR_Complete_checkpoint(valid);

20
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

// Shut down SCR (do this just before MPI_Finalize)
SCR_Finalize();

Using the SCR API: Checkpoint

// Determine whether we need to checkpoint
int flag;
SCR_Need_checkpoint(&flag);
if (flag) {
//// Tell SCR that a new checkpoint is starting
SCR_Start_checkpoint();

// Define the checkpoint filename for this process
int rank;
char name[256];
MPI C k(MPI COMM WORLD k)MPI_Comm_rank(MPI_COMM_WORLD, &rank);
sprintf(name, “rank_%d.ckpt”, rank);

// Register our file, and get the full path to open it
char file[SCR_MAX_FILENAME];
SCR_Route_file(name, file);

// Open, write, and close the file
int valid = 0;
FILE* fs = open(file, “w”);
if (fs != NULL) {
valid = 1;
size t n = fwrite(checkpoint data 1 sizeof(checkpoint data) fs);size_t n = fwrite(checkpoint_data, 1, sizeof(checkpoint_data), fs);
if (n != sizeof(checkpoint_data)) { valid = 0; }
if (fclose(fs) != 0) { valid = 0; }

}

// Tell SCR whether this process succeeded in writing its checkpoint
SCR Complete checkpoint(valid);

21
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

SCR_Complete_checkpoint(valid);
}

Case study: pf3d on Juno

With parallel file system only
• Checkpoint every 2 time steps at average cost of 1200 secs.

With parallel file system & SCR
• Checkpoint every time step at average cost of 15 secs.
• Write to parallel file system every 14 time steps.
• Allocate 3 spare nodes for a 256 nodes job• Allocate 3 spare nodes for a 256 nodes job

In a given period
• 7 times less checkpoint data to parallel file system.

P t ti t h k i ti d d f 25% t 5 3%• Percent time spent checkpointing reduced from 25% to 5.3%.
• Time lost due to a failure dropped from 55 min to 13 min.

A nice surprise
• With SCR, mean time before failure increased from a few hours to tens of

hours or even days.
• In this case, less stress on the network and the parallel file system reduced

failure frequency.
Far fewer restarts far less time spent re computing the same work

22
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

• Far fewer restarts far less time spent re-computing the same work.

What can SCR do?

Write checkpoints (up to 100x) faster than the parallel file system.
• Checkpoint more often save more work upon failure.p p
• Reduce defensive I/O time increase machine efficiency.

Reduce load on the parallel file system (community benefit).
• Each application writing checkpoints to SCR frees up

bandwidth to the parallel file system for other jobs.

Make full use of each time slot via spare nodesMake full use of each time slot via spare nodes.
• Avoid waiting in the queue for a new time slot after hitting a

failed node or process.

Improve system reliability by shifting checkpoint I/O workload to
hardware better suited for the job.

23
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

Costs and limitations

Files are only accessible to the MPI rank which wrote them.
• Limited support for applications that need process-global pp pp p g

access to checkpoint files, which includes applications that can
restart with a different number of processes between runs.

Need hardware and a file system to cache checkpoint filesNeed hardware and a file system to cache checkpoint files.
• RAM disc is available on most Linux machines, but at the cost

of giving up main memory.
• Hard drives could be used, but drive reliability is a concern.

Only 6 functions in the SCR API, but integration may not be trivial.
• Integration times thus far have ranged from 1 hour to 4 days.
• Then testing is required.

24
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

Ongoing work

Integrating SCR into more codes at Livermore,
and porting SCR to more platformsand porting SCR to more platforms.

Automating data collection of performance, g p
failure rates, and file rebuild success rates.

Using Coastal to investigate effectiveness ofUsing Coastal to investigate effectiveness of
solid-state drives for checkpoint storage.
• 1152-node cluster with a 32GB Intel X-25E

SSD mounted on each node.
• Early testing shows good performance and

scalability Drive performance and reliability

25
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

scalability. Drive performance and reliability
over time are open questions.

Interested?

Open source project:
BSD li• BSD license

• To be hosted at sourceforge.net/projects/scalablecr

Should work without much trouble on Linux clusters
• Depends on a couple other open source packages.p p p p g

Email me:
• Adam Moody
• moody20@llnl.gov

26
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

Extra slides

27
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

SCR interpose library

In some cases, codes can use SCR transparently
without even rebuildingwithout even rebuilding.

For codes that meet certain conditions, one can specifyFor codes that meet certain conditions, one can specify
a checkpoint filename via a regular expression and then
LD_PRELOAD an SCR interpose library.

This library intercepts calls to MPI_Init(), open(),
close() and MPI Finalize(); and then it make calls toclose(), and MPI_Finalize(); and then it make calls to
SCR library as needed for filenames which match the
regular expression.

28
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

Catastrophic failures

Example catastrophic failures from which the library can
not recover all checkpoint filesnot recover all checkpoint files
• Multiple node failure which violates the redundancy scheme

(happened twice in the past year).
• Failure during a checkpoint (~1 in 500 checkpoints).Failure during a checkpoint (1 in 500 checkpoints).
• Failure of the node running the job batch script.
• Parallel file system outage (any Lustre problems).

To deal with catastrophic failures, it is necessary to
write to Lustre occasionally, but much less frequently
th ith t SCRthan without SCR

29
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

Partner selection

Picking partner ranks
in an 8 node job with 2 ranks per nodein an 8 node job with 2 ranks per node

Ranks
per

node

Nodes

30
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

XOR set selection

Assigning ranks to XOR sets of size 4Assigning ranks to XOR sets of size 4
in an 8 node job with 2 ranks per node

XOR set

Ranks
per

node

Nodes

31
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

Example job script w/ SCR

#!/bin/bash
#MSUB –l partition=atlas
#MSUB –l nodes=66
#MSUB –l resfailpolicy=ignorep y g
above, tell MOAB / SLURM to not kill job allocation upon a node failure
also note that the job requested 2 spares – it uses 64 nodes but allocated 66

add the scr commands to the job environment
. /usr/local/tools/dotkit/init.sh
use scr

specify where checkpoint directories should be written
export SCR_PREFIX=/p/lscratchb/username/run1/checkpoints

instruct SCR to flush to the file system every 20 checkpoints
export SCR_FLUSH=20

exit if there is less than hour remaining (3600 seconds)
export SCR_HALT_SECONDS=3600

attempt to restart the job up to 3 times
export SCR_RETRIES=3

run the job with scr_srun
scr_srun –n512 –N64 ./my_job

32
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

Halting an SCR job

It is important to not stop an SCR job if it is in the middle of a
checkpoint, since in this case, there is no complete checkpoint
setset

$SCR_HALT_SECONDS + libyogrt can be used to halt the job
after a checkpoint before the allocation time expires

scr_halt command writes a file which the library checks for after
each checkpoint
• scr halt• scr_halt

[--checkpoints <num>]
[--before <time>]
[--after <time>]
[--immediate][]
[--seconds <num>]
<jobid>

33
UCRL# LLNL-PRES-418063 Integrated Computing and Communications Department

