LACSS 2009: Workshop on HPC Resiliency
Santa Fe, New Mexico, USA
Oct 14 2009

Highly Scalable Fault Tolerance
for Exascale HPC

Zizhong (Jeffrey) Chen
zchen@mines.edu

Colorado School Mines

mailto:zchen@mines.edu

Outline

Motivation

Fault Tolerance in Message Passing Interface (MPI)
Highly scalable checkpointing for large scale computing
Algorithm-based checkpoint-free fault tolerance

Optimal floating-point error correction codes

Trends in HPC

(TOP500: U. of Tennessee, LBNL, and U. of Mannheim)

i} Rmox | Rmoaxc/
Rank Site Computer Courntry Cores [Tflops] Rpeak
TEM / Roadrunner -
1 DOE/NNSA/LANL | g o e ot <21 USA 129600| 1105.0 | 76%
DOE/ Oak Ridge Cray / Jaguar - Cray XT5
2 | National Laboratory QC 2.3 6Hz S R e
MNASA Ames Research| SE&L Y Pleiodes - S&T Altix
3 Center/INAS ICE 8200EX UsA 51200 | 487.0 | 80%
4 DOE/NNSA/LLNL | L1BM / eServer Blue Gene USA 212992| 478.2 | so0%
Solution
5 |POE/Argonne Nationall 1, / 1o Gene/P Solution USA 163840 450.3 | 81%
Laboratory
MNSF/Texas Advanced
6 e Sun / Ranger - SunBlade USA 62976 | 433.2 | 75%
Center/Univ. of Texas
7 | DOE/NERSC/LBNL | Cray / Franklin - Cray XT4 USA 38642 | 266.3 | 75%
DOE/Oak Ridge
8 | National Laborajery | Cray / Jaguar - Cray XT4 USA 30976 | 205.0 | 79%
DOE/NIMNSA/ Sandia
9 | ispsoancla | Cray / Red Storm - XT3/4 USA 38208 | 204.2 | 72%
10 Shanghai Dawning 5000A, Windows China 30720 | 1806 | 77U

Supercomputer Center

HPC 2008

Parallel Systems with thousands of processors/cores are very common today

- Largest (Blue Gene from IBM): more than 200K cores

- Smallest (Dawning 5000A): more than 30K cores

- Average (of top 10): more than 80K cores per system

Reliability of Large Systems

Earth Simulator Research amd Dewvelopment Center

As HPC systems become larger and larger
- Failure of some links or cores is becoming more and more frequent

What Is the Failure Rate in HPC Practice?

Gibson (CMU): Fault Tolerance in Petascale Computers, CTWatchQuarterly, Nov, 2007

19 HPCs at LANL: The MTTF varies from about half a month to less than half a day

120’0 T T T T T T T T T T T T T T T T T T T 1 IIIIIIIIIIIIIIIIIII
'5—; 0ar
1000+ @
§ 0.8
g &
= 0.7¢
-3 800} 2
e ;u.a—
5
: e
5 600 T 05
— wn
5] @ oal —
E =
400 o
E hanfll1 15 _
5]
Z —_
28 o0zt -
200+ . E
=
1] l |
96 97 98 01 01 01 02 02 03 03 03 03 03 03 03 03 03 03 04 96 97 98 01 01 01 02 02 03 03 03 03 03 03 03 03 03 03 04
Year system was introduced Year system was introduced

Figure 2. (a) Average number of failures for each LANL system per vear. (b) Average number of failires
Jor each system per vear normalized by number of processors in the system. Systems with the same
hardware tvne have the same color

Expected Program Execution Time

Increase of the failure rate

- Suppose the failure rate of a single node is A
- What is the failure rate of n nodes?

- nA

Expected program execution time
- T: program execution time in a failure free environment
- E: expected program execution time in an unstable environment

-NAT

"+ T (+E) nre " dt

-ni

T
[l

Te

Checkpoint/Restart

Comp Proc 1 Comp Proc k
/ —/—
Process Stat rocess Sta —
Pl I:)k
EEEEEEERN
Stable
Storage-

Checkpoint/restart is today's typical fault tolerance approach in HPC
- Periodically write all process states into stable-storage
- If one process fails, abort all processes
- Good for tolerating the failure of the whole system
- But the overhead is high: T = # of procs * size_ckpt / io-bandwidth

Today's architectures are usually robust enough to survive partial failures
without suffering the failure of the whole system
- Can we tolerate partial failures with less overhead (and better scalability)
than checkpoint/restart ?

Scalable Techniques for Fault Tolerant
High Performance Computing

Design scalable fault tolerance techniques for HPC to recover from partial
process failures

- Tolerate a small number of process failures

- Highly scalable

Assume a failure-stop model
- Failed processes stop working

- All data on failed processes are lost

Outline

Motivation

Fault Tolerance in Message Passing Interface (MPI)
Scalable checkpointing for large scale computing
Fault tolerant linear algebra algorithms and software

Numerically stable floating-point numbers error correction codes

FT-MPI http://icl.cs.utk.edu/ft-mpi/

MPI: A Message Passing Interface Standard for HPC
- has been widely accepted in today's high performance computing
- However, MPI standard does not address the fault tolerance issue
- If one MPT process fails, most MPI implementations abort all

FT-MPI is a fault tolerant MPI implementation developed at U of Tenn.
- It detects failures and recovers the MPI runtime environment
- Gives applications the possibility to survive partial process failures

FT-MPI does NOT:
- Automatically recover the application when a process failure occurs

A fault tolerant application developer has to:
- Design his own recovery schemes to recover his application

http://icl.cs.utk.edu/ft-mpi/

Open MPI http://icl.cs.utk.edu/open-mpi/

. A classification of fault tolerant message passing environments considering
A) level in the software stack where fault tolerance is managed and

B) fault tolerance techniques.
Automatic Non Automatic

Checkpoint

based Log based

Optimistic log

(sender based) Causal log Pessimistic log

Optimistic recovery

In distributed systems
n faults with coherent checkpoint

[SY85]

Causal logging +
Coordinated
checkpoint

Manetho
n faults
[EZ92]

Cocheck
ndependent of MP
[Ste96]

Framework

Starfish

Enrichment of MPI

Fg

@ Egida MPI/FT
AP | Semi-transparent checkpoin, Redundance of tasks
[CLPO7] E [RAV99] [BNCO1
&>
2 faults sender based
PRU98

\'S\nder based Mess. Log:
1 fault sender based
' JZ87

New community MPI effort OPEN-MPI ==

FT-MPI

Modification of MPI routines
User Fault Treatment

D00

MPICH-V MPI-FT
N faults N fault
Distributed logging

Communication
Layer <

Centralized server

http://icl.cs.utk.edu/open-mpi/

Outline

Motivation

Fault Tolerance in Message Passing Interface (MPI)
Scalable checkpointing for large scale computing
Fault tolerant linear algebra algorithms and software

Numerically stable floating-point numbers error correction codes

Comp Proc 1

Process Stat
Pl

Checkpoint/restart is today's typical fault tolerance approach in HPC
- Periodically write all process states into stable-storage

- T =

Checkpoint/Restart

Comp Proc k

L

rocess Sta

Py

of procs * size_ckpt_per_procs / io-bandwidth

S
S

table
torage-

Diskless Checkpointing
(J. S. Plank, et. el.)

Comp Proc 1 Comp Proc k Ckpt Proc

Each computational processor saves a copy of its state locally in memory
Dedicate an additional processor to save the XOR's of these states

When a failure occurs
- Surviving processor roll back to its last state. The failed processor's
state can be calculated from local checkpoints and the encoding

Diskless Checkpointing
(J. S. Plank, et. el.)

Total humber of steps: log (# of procs)

The time to perform one checkpoint:
T = log (# of procs) * (size_ckpt / bandwidth + latency)
~ log (# of procs) * size_ckpt / bandwidth

A Scalable Algorithm for Checkpoint Encoding

stelpo stepl step2 step3
processor 0: m[0] ‘ . . . R
+ m[O0][0] m[O][1] m[0][2] m[0][3]
processor 1: m[1] asmEEmEEE
+ m[O][0]+m[1][0] m[O][1]+m[1][1] m[0][2]+m[1][2]
processor 2: m[2] Crssssas
I m{OJ{O}+m{LI[O}m{2][0] {OlL}+m{L][L}+m(2][1]

ckpt processor: ‘ ‘ ‘ ‘ EEEEEEEE®

Optimize size_seg to achieve optimal checkpoint performance

- T=(p+ N)* (size_seg / bandwidth + latency)
= (p + size_ckpt / size_seg) * (size_seg / bandwidth + latency)
>= size_ckpt / bandwidth * (1 + O (sqrt (latency * p / size_ckpt)))

~ size_ckpt / bandwidth

Survive Multiple Failures by Reed-Solomon Encoding

Compute Procs Checkpoint Procs

If there are k(<= m) processes failed, then the m equalities become

m equations with & unknowns
By appropriately choosing A, the lost data can be recovered by solving the m equations.

The checkpoint overhead (assuming pipelined encoding):
T =~ m * size_ckpt / bandwidth

Reed-Solomon Encoding:
Checkpoint into Neighbor Processes

\ f
i

In order to tolerate m failures, divide all processes into subgroup of size
m(m+l1)
Within each subgroup, save each of the m encodings into (m+!) different processes.

The checkpoint overhead (assuming pipelined encoding):
T =~ (m+1) * size_ckpt / bandwidth

.

\

How to Choose the Encoding Matrix A4 ?

C, =a11*P1+---+a1j *P"j +---+a1(j+m)*ll3j+m +---+a,, " P,

Chn=am*P +--+a, ™k

)j +-.--4+a

m(j+m)

*

n

Pijm +--+a,, P

In order to be able to recover from any k (k <= m) failures, the checkpoint

encoding matrix A has to satisfy

Any square sub-matrix of A is non-singular

How to find such an A ?

- Cauchy matrix:

p

1

X1+ Y,

1

Xm + Yy

1 \
X1+yn

1
Xm+yn)

How to perform the multiplication of two process states ?
- Process states have to be treated as bit-streams
- Galois field arithmetic has to be used in the computation

PCG: Performance with Different MPI Implementations

Time (Seconds)

PCG Performance with Different MPI Implementations

1000

OLAM-7.0.4

900 ®WMPICH2-1.0
800 |(OFT-MPI

700

OFT-MPI w/ ckpt
B FT-MPI w/ rcvr

600
500 [
400 [
300 [
200 [
100 [

Problem #1

Problem #2 Problem #3 Problem #4

Problems

Platform: 64 dual-processor 2.4 6GHz AMD Opteron nodes with Gigabit interconnect.
Size of checkpoint per processes: ~ 0.25 MBytes

T for 20000 iterations | LAM-7.0.4 | MPICH2-1.0 | FT-MPI FT-MPI-1.2 ckpt/2000 iterations FT-MPI-1.2 exit 1 proc @10000 I
(= 1 minute) iterations

15 comp. procs | 522.5 |536.3 517.8 |518.9 521.7

30 comp. procs | 532.9 |542.9 532.2 |533.3 537.5

60 comp. procs |545.5 |553.0 546.5 |547.8 554 .2

120 comp. procs | 674.3 | 624.4 622.9 |624.4 637.1

PCG: the Overhead for Checkpoint and Recovery

PCG Perforamce Overhead for Checkpoint and Recovery
/-\1000 =—t=T ckpt
'g —8—T rcvr data
§ 100 T revr ftmpi
w2
ia =
> 10 | %—.
=
(-
(«b]
-
o
1
60 120 240 480
Number of Computation Processors

Run PCG for 5000 iterations and take checkpoint every 1000 iterations (~5 minutes).
Simulate a failure of one node by exiting 4 processes at the 3000-th iteration.
Size of checkpoint per processes: ~ 25 Mbytes.

Time (Seconds) | T_tot T_ckpt T _rcvr_data T_rcvr_ftmpi
60 procs 1441.7 8.0 9.8 24.8

120 procs 1490.5 9.2 9.9 42.1

240 procs 1557.5 9.2 10.0 77.2

480 procs 1697.0 9.7 10.1 146.1

Outline

Motivation

Fault Tolerance in Message Passing Interface (MPI)
Scalable checkpointing for large scale computing
Fault tolerant linear algebra algorithms and software

Numerically stable floating-point numbers error correction codes

Checkpoint-Free Fault Tolerance

Assume

- we are running a parallel program where P,(+) denotes the data on the
ith processor at time t

- P,(t)* P,(t)+ .. + P (t) =P, (t) foranyt

If the first processor fails, how can we recover the lost data P,(t) ?
- Answer: P(t) = P,,,(1) - P,(t) - ... - P,(%)

Question 1: does this kind of special relationship exist in non-trivial
applications ?
- YES: In many iterative methods, it does exist |

Question 2: If such a relationship does not exist, is it possible for us
create this kind of special relationship on purpose ?

- Sometimes YES: For some programs doing dense linear algebra
computations, such a relationship can be created by performing
computations with encoded data

Checkpoint-Free Fault Tolerance for Iterative Methods
(SIAM: SISC 2007)

Assume
- we are solving A * x = b by iterative methods

- r=b-A* xis maintained in memory

In a parallel environment, r=b - A* x can be rewrite as

a,, *xX, + - + a;,,*X = b, -1

n

* * —
a,,*x, + - + a X,, = b,—r

nn

If the ith processor fails, then both r; and x. become unknown

- X.can be recovered accurately unless a; is singular for ALL k # i

- If only a; is non-singular, setr, = 0

Checkpoint-Free Fault Tolerance for Dense Linear Algebra

The column checksum matrix A° of the matrix A is defined by
aoo a0 n1 Algorithm-based Fault Tolerance
Abraham (UTexas), 1984:
Af =
m—10 T Um—1n-1
S aio .. L Gine If A *B =¢C
* =Cf
The row checksum matrix A™ of the matrix A is defined by Then Ac*Br=¢C
ao a1 Yi—pao;) o)
. : | Checksum is maintained in
| final computation results

AT —
n—1
Am—-10 Um—1n-1 Zj:[} Am—1j

The full checksum matrix A/ of the matrix A is defined by

n—1
ag Aip j=0 00 j
Al =
—1
Tm—10 Tt Tm—1n—1 Z;;[] Am—1j
m—1 m—1 n—1 —m—1
>i=0 @io >i=0 @in-1 Zj:[l >oi=0 Qij

Is the Checksum Maintained During Computation?

/* Calculate A° % B” by cannon’s algorithm. */
initialize €' = (c;;) =0;
fori=0ton—1
left-circular-shift row i of A® by i
so that a; ; is overwritten by @; (j1i) modni
end
fori=0ton—1
up-circular-shift column i of B" by i
so that b; ; is overwritten by b\) modn, ji
end
fors=0ton—1
every processor (i,j) performs ¢;; = ¢;; + a;; * b;
locally in parallel;
left-circular-shift each row of A° by 1;
up-circular-shift each column of B" by 1;
/* Here is the end of the s step. */

end

/* Calculate A° + B” by fox's algorithm. */
initialize C' = (e55) = 0;
fors=0ton—1
for i =0 to n — 1 in parallel
processor (i, (i + s) modn) broadcast local
t = @i, (i+s) mod n tO Other processors in row i;
fori,j =0 to n—1 in parallel
every processor (i, j)
performs ¢;; = e;; + £ # by; locally;
up-circular-shift each column of B” by 1;
/* Here is the end of the st" step. */

end

NOT maintained

- Cannon's algorithm
- Fox's algorithm

Maintained

NO

- OQOuter product version algorithm

/* Calculate A, + B. by outer product algorithm.*/
initialize C' = (c;;) = 0;
fors=0ton—1

row broadcast the st* row of Ag;

column broadcast the st* column of B,

every processor (ij) performs c;; = ¢;; + as * by;

locally in parallel;
/* Here is the end of the s'" step. */

end

YES

Outer product version is usually used in today's HPC practice

Checkpoint-Free Fault Tolerance for ScaLAPACK
(IEEE: TPDS to appear)

Define the row distributed checksum matrix of M as

M 11 M 1q
YR : :
M 01 M o
p p
z i=1 My z i=1 M i

Define the column distributed checksum matrix of M as

q
M 4 M 1q Z j=1 M 1]

q
Moy, - M Z j=1M pi

Define the full distributed checksum matrix of M as

(A/ Mlq 211'\/'1])
Mo : : :
M0, M Zj:lM pi
\Z ip=1 Mi e Z If:l M z ip=1z ?:1 M

An Example: ScaLAPACK Matrix-Matrix Multiplication

PDGEMM: C=C+A*B

FT-PDGEMM operates
on Ar, Bc and Cf

At the j7 iteration:

Theorem:

ke

cr(j+1)

X

Br

10|+ 16 < R

At the end of each iteration, the checksum relationships
in A7, B¢, and C * are still maintained

Conclusion

- Single failure during computation can be recovered from the checksum
- By using a floating-point version Reed-Solomon code, multiple failures can be

tolerated

Matrix Multiplication: Overhead and Scalability Analysis

The overhead (%) for constructing Checksum at the beginning

Tmmi_cncode

Riamf_enccde —

Tmai rix_mult

= O(5-)

The overhead (%) for computation due to larger size of matices

TGI-‘E‘T head _matriz_muli

Rmrcrh ead_matriz_mult T
matrir_mult

1
Pm’
The overhead (%) for recovery after a failure

= O

Trccauer_daia

Rrecmrer_dara —

Tmatri:n_m ult

1
O(5,.-)

Note that
-o0(1/(p"m)) ——s 0, asp, M—— OO

PDGEMM: the Overhead for Fault Tolerance

Overhead of Fault Tolerance (Time)

“» 4500

E 4000 —— T without ft
S 3500

Z 3000

—8—T yith ft

2 2500 T with_recover

e 2000

4 9 16 256 36 49 64 81 100

Number of Processors (on Original Data)

(%)

Overhead

50

45

40 |

35

30

25 |

20

15

10

Overhead of Fault Tolerance (Percentage)

—4&— Overhead without recover

\ —— Overhead with recover

AN

4 9 16 25 36 49 64 81 100

Number of Processors (on Original Data)

 Remember that the percentage of overhead for fault tolerance is

-0(1/(p*n))——0, asp—— OO

PDGEMM: The Overhead (%) for Calculating Encodings

Overhead for Constructing Checksum Matrices
25
20 | \
<
~ 15
o
©
o
<
5
> 10 B
(&)
5
0
4 9 16 25 36 49 64 81 100
Number of Processors (on Original Data)

Note that the overhead for encoding is

-0(1/(p*n))——0, asp—— OO

PDGEMM: The Overhead for Performing Computation
with Encoded Matrices

Overhead for Performing Computations on Encoded

Matrices

N
| \\‘M

4 9 16 25 36 49 64 81 100

Overhead (%)

Number of Processors (on Original Data)

Note that the overhead for performing computation with encoded
matrices is

-0(1/(p*n)) ——0, asp— OO

PDGEMM: The Overhead for Recovering
FT-MPI Environment

0.2

0.18 M
0.16

0.14 |
0.12 |
0.1 f

0.08 |

Overhead (%)

0.06

0.04
0.02

4 9 16 25 36 49 64 81 100

Number of Processors (on Original Data)

Note that the time to recover FT-MPI
- is currently O (p?), but will be improved to O(log p) soon

- is negligible (< 0.2%) compared with the time to recover
application data

PDGEMM: The Overhead for Recovering
Application Data

Overhead for Recovering Lost Data
18
16 ‘\
14
/\; 12 |
- 10
©
5)
< 8
5)
>
© 6
4 *
2
0
4 9 16 25 36 49 64 81 100
Number of Processors (on Original Data)

Note that the overhead for recovering the application data is

-0(1/(p*n))——0, asp —— OO

Outline

Motivation

Fault Tolerance in Message Passing Interface (MPI)
Scalable checkpointing for large scale computing
Fault tolerant linear algebra algorithms and software

Numerically stable floating-point numbers error correction codes

Floating-Point Codes to Tolerate Multiple Failures

x* x*
I:I.j+m Tt a1n Pn

Co=a,*P+-+a; "R ++a.,

C,=ayp*R+--+a,*F +--+a P ot an, ™R

m(j+m) n

\

In order to be able to recover from any k (k <= m) failures, the weight
matrix A has to satisfy

Any square sub-matrix of A is non-singular

To maintain the checksum relationship
- Floating-point arithmetic has to be used when calculating encodings

Due to round-off errors in floating-point computations
Require any square sub-matrix of A is well-conditioned

Can we use Cauchy, Vantermonde, DFT matrices ? Nol

Floating-Point Codes Based on Random Matrices

It is well-known Gaussian random matrices are well-conditioned with high probability.

Any sub-matrix of a Gaussian random matrix & is still a Gaussian random matrix
- Therefore, any square sub-matrix of & is well conditioned with high probability

How well-conditioned a Gaussian random matrix is?

[n—-ml+1 [n—-ml+1
1 o'245|n rr;|+1 1 6'414|n rr:1|+1
— Pr(x, (G —
\/E X < (KZ(mxn) > X)< \/ﬂ X
E(|Og 10 K2(Gm><n))< log 10 m‘F 0.981. (SIAM: SIMAX 2005)

In our fault tolerant applications:

Assume we are running an application on a 100K-processor system, and tolerating
20 concurrent failures. If there are 10 concurrent failures actually occur, then

(1). On average, we will loss about 1 decimal digit in recovery
(2). The probability to lose 2 decimal digits is less than 10 - 10

Why Gaussian Random Matrices are so Good ?

The condition number of a matrix can be treated as a measure of the
degree of linear independence of the columns of the matrix

- Dependent: k= <= Orthogonal: k = 1;

Uniformly-distributed points on spheres produce good degree of linear
independence

Gaussian distribution in R" is equivalent to Uniform distribution in S
(Knuth 69)

Real Number Codes from Grassmannian Frames

Maximize the minimum angle
between columns of the matrix

Distributing points on sphere appropriately is
usually difficult

Stephen Smale @ Berkeley: 18 unsolved
math problems in 21st century

Question #7: distribution of points on the
2-sphere

No analytical solution available except for
very few combination of Nand d

Best Line Packing in Grassmannian Space

Maximize the minimum angle between pair of vectors
- Packing lines in Grassmannian space

Neil J. A. Sloane @ AT &T Research

- Known optimal line packing for selected m,and n

- For most m and n: it is unknown

- Computational approximations

- http://www.research.att.com/~njas/grass/grassTab.html

Grassmannian Codes
- Does NOT guarantee sub-matrices are well conditioned

- It is even possible to contain singular sub-matices

http://www.research.att.com/~njas/grass/grassTab.html

Real Number Codes with Optimal Numerical Stability

— * * * *
Cl_gll P1+"'+g1j Pj+1+"'+gl(j+m) Pj+m+"'+gln Pn

Cm - gml*Pl+'“ + gmj *Pj+1+”' + gm(j+m)*Pj+m + e+ gmn *Pn

Recovery accuracy
- NOT directly related to the correlation of pair of vectors
- BUT more directly related to the condition number of the coefficient matrix

- The coefficient matrix may be any square sub-matrix of G

Real number codes with optimal numerical stability

- Optimize the recovery accuracy for the worst case scenario
- Minimize maximum condition number of the coefficient matrix
- Defined optimal real number codes as 6 that satisfies

f(m,n) = ngn max k(G;)
|

Optimal codes for 2 erasures

o Ay 2n—1)w
q_ [coS3r cosy 5
C P A (2n—1)m
111 5 COS 5, 7
) |III]- -— CSs —
fi2,n) = =
1 — - ey
2n
~ — o (N—>wo)

There is NO arbitrarily large matrix that satisfys
Any sub-matrix of the matrix is well conditioned

It is impossible even for the best 2-erasure codes to correct ALL possible
2-erasures when the number of data items (processors) is large

- The introduced numerical errors can be arbitrarily large

Optimal codes for 2 erasures

- (In—1m
. COS 7 H:"ﬂh —
E._] p— _|'|. ! _.II
oo ?.-,- (2n—1)w
S111 A '['[:"- . A
ATl ZT1
. ,-'Il + cos—
f(2,n) = 4| =
k' 1 —cos—
2n
~ — o (N—>wo)

al

In order to guarantee to correct ALL possible 2-erasures in IEEE standard
754 floating point numbers (16 digits of accuracy) with k digits of accuracy
- The total number of data items (processors) nmust satisfy

= 10164

rulﬂ

When the number of data items (or pocessors) is larger than 107 (16-k)

- 100% recovery can be guaranteed by dividing data items (or processors) into
subgroup of less than 107 (16-k) items

Experimental Results: Worst Case Comparison

Tolerate 3 failures in 10 numbers: 120 possible combinations.
Compare worst 5 condition numbers of all possible 3X3 sub-matrices

Random 47.2541 96.3024 111.9643 161.5512 217.1479
Grassmannian | 0.5334*10717 | 0.7204*107*7 | 2.3102* 077 2.3102*1077 | Inf
Optimal 14.7503 15.6580 16.1104 16.1609 16.5355
0.2143 -0.2966 0.2635 0.0381 -0.0060 0.0777 -0.2428 -0.0233 0.2121 -0.2288
Random: ~0.1691 0.0577 -0.2430 0.1148 0.4060 0.0591 -0.1413 -0.3526 -0.3728 -0.1803
0.3306 0.2845 -0.3741 0.2420 0.4698 -0.4113 0.4380 -0.1750 -0.2025 -0.0038
1 0.6101 0.6101 0.6101 0.6101 0.6101 0.6101 0O 0 0
Grassmannian
0 0.7923 0.3961 -0.3961 -0.7923 -0.3961 0.3961 0.8660 —-0.8660 0
(Sloane@A&TT)
0 0 0.6861 0.6861 0O -0.6861 -0.6861 0.5000 0.5000 -1
-0.5566 0.1467 0.7247 0.9919 0.4631 -0.6691 0.5614 -0.2353 0.0686 —0.6749
Optimal 0.8095 0.7985 0.4905 0.1217 -0.1332 0.2351 -0.6914 -0.0325 0.9466 -0.5804

0.1871

0.5839 0.4839 0

.0365 0.8763 0

. 7050 0.4547

0.9714

-0.3149 0.4556

20

1

16

14

12

10

Distribution of all 120 condition numbers:
Random vs Optimal

S0

45

40

35

20

2%

20

15

10

Distribution of all 120 condition numbers:
Grassmannian vs Optimal

Conclusions and Future Work

Several scalable fault tolerance techniques have been developed to survive a small
number of process failures in large parallel computing.

- Extended the existing diskless checkpointing technique to improve the
scalability in large scale computing

- Designed checkpoint-free fault tolerance technique for parallel matrix
computations

- Developed a class of numerically stable floating-point erasure codes to help
to survive multiple simultaneous processes failures

Experiment results demonstrate that these techniques are highly scalable.
Future work: relieve the burden of FT from the application programmer
- Incorporate the scalable checkpointing technique into the Open MPI library

- Build the checkpoint-free technique into ScaLAPACK and PETSc (from ANL)

Questions?

	Highly Scalable Fault Tolerance �for Exascale HPC
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	幻灯片编号 26
	幻灯片编号 27
	幻灯片编号 28
	幻灯片编号 29
	幻灯片编号 30
	幻灯片编号 31
	幻灯片编号 32
	幻灯片编号 33
	幻灯片编号 34
	幻灯片编号 35
	幻灯片编号 36
	幻灯片编号 37
	幻灯片编号 38
	幻灯片编号 39
	幻灯片编号 40
	幻灯片编号 41
	幻灯片编号 42
	幻灯片编号 43
	幻灯片编号 44
	幻灯片编号 45
	幻灯片编号 46
	幻灯片编号 47
	幻灯片编号 48

