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Trends in HPC
 (TOP500: U. of Tennessee, LBNL, and U. of Mannheim)

•

 

Parallel Systems with thousands of processors/cores are very common today
–

 

Largest (Blue Gene from IBM): more than 200K cores
–

 

Smallest (Dawning 5000A): more than 30K cores
–

 

Average (of top 10): more than 80K cores per system



Reliability of Large Systems

•

 

As HPC systems become larger and larger
–

 

Failure of some links or cores is becoming more and more frequent



What Is the Failure Rate in HPC Practice?
 Gibson (CMU): Fault Tolerance in Petascale

 

Computers, CTWatchQuarterly, Nov, 2007

19 HPCs

 

at LANL: The MTTF varies from about half a month to less than half a day



Expected Program Execution Time

•

 

Increase of the failure rate
–

 

Suppose the failure rate of a single node is 
–

 

What is the failure rate of n

 

nodes?   
–

 

n

•

 

Expected program execution time 
–

 

T: program execution time in a failure free environment
–

 

E: expected program execution time in an unstable environment



Checkpoint/Restart

•

 

Checkpoint/restart is today’s typical fault tolerance approach in HPC
–

 

Periodically write all process states into stable-storage
–

 

If one process fails, abort all  processes
–

 

Good for tolerating the failure of the whole system
–

 

But the overhead is high :   T  = # of procs

 

* size_ckpt

 

/ io-bandwidth

•

 

Today’s architectures are usually robust enough to survive partial failures 
without suffering the failure of the whole system
–

 

Can  we tolerate  partial failures with less overhead (and better scalability) 
than checkpoint/restart ?

Comp Proc 1                                 Comp Proc k         

Process State
P1

Process State
Pk

Stable
Storage



Scalable Techniques for Fault Tolerant 
High Performance Computing

•

 

Design scalable fault tolerance techniques for HPC to recover from partial 
process failures

–

 

Tolerate a small number of process failures 

–

 

Highly scalable

•

 

Assume a failure-stop model

–

 

Failed processes stop working 

–

 

All data on failed processes are lost
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FT-MPI http://icl.cs.utk.edu/ft-mpi/

•

 

MPI: A Message Passing Interface Standard for HPC
–

 

has been widely accepted in today’s high performance computing
–

 

However, MPI standard does not address the fault tolerance issue
–

 

If one MPI process fails, most MPI implementations abort all

•

 

FT-MPI is a fault tolerant MPI implementation developed at U of Tenn.
–

 

It detects failures and recovers the MPI runtime environment
–

 

Gives applications the possibility to survive partial process failures

•

 

FT-MPI does NOT:
–

 

Automatically recover the application when a process failure occurs

•

 

A fault tolerant application developer has to:
–

 

Design his own recovery schemes to recover his application

http://icl.cs.utk.edu/ft-mpi/


Open
 

MPI
 

http://icl.cs.utk.edu/open-mpi/

Manetho
n faults
[EZ92]

Egida

[RAV99]

MPI/FT
Redundance of tasks

[BNC01]

FT-MPI
Modification of MPI routines

User Fault Treatment
[FD00]

MPICH-V
N faults

Distributed logging

MPI-FT
N fault

Centralized server
[LNLE00]

Non AutomaticAutomatic

Pessimistic log

Log basedCheckpoint
based
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Level

Framework
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Independent of MPI

[Ste96]

Starfish
Enrichment of MPI

[AF99]
Clip

Semi-transparent checkpoint

[CLP97]

Pruitt 98
2 faults sender based

[PRU98]

Sender based Mess. Log.
1 fault sender based

[JZ87]

Optimistic recovery
In distributed systems

n faults with coherent checkpoint
[SY85]

• A classification of fault tolerant message passing environments considering

A) level in the software stack where fault tolerance is managed and

B) fault tolerance techniques. 

Causal logging +
Coordinated 
checkpoint

LAM/MPI

MPICH-V/CL LA-MPI

New community MPI effort OPEN-MPI

http://icl.cs.utk.edu/open-mpi/
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Checkpoint/Restart

•

 

Checkpoint/restart is today’s typical fault tolerance approach in HPC
–

 

Periodically write all process states into stable-storage

–

 

T  = # of procs

 

* size_ckpt_per_procs

 

/ io-bandwidth

Comp Proc 1                                 Comp Proc k         

Process State
P1

Process State
Pk

Stable
Storage



Diskless Checkpointing
 (J. S. Plank, et. el.)

Comp Proc 1                                 Comp Proc k         Ckpt

 

Proc     

Process State
P1

Local 
Checkpoint

C1

Process State
Pk

Local 
Checkpoint

Ck

Checkpoint
Encoding

C

•

 

Each computational processor saves a copy of its state locally in memory
•

 

Dedicate an additional processor to save the XOR’s

 

of these states

•

 

When a failure occurs
-

 

Surviving processor roll back to its last state. The failed

 

processor’s 
state can be calculated from local checkpoints and the encoding

XOR

Stable
Storage

C1

 

+  . . .  + Cn

 

= C



Diskless Checkpointing
 (J. S. Plank, et. el.)

•

 

Total number of steps:  log ( # of procs

 

)

•

 

The time to perform one checkpoint:   
T =

 

log ( # of procs

 

)

 

* ( size_ckpt

 

/ bandwidth + latency )
≈

 

log ( # of procs

 

)

 

* size_ckpt

 

/ bandwidth



A Scalable Algorithm for Checkpoint Encoding

•

 

Optimize size_seg to achieve optimal checkpoint performance

–

 

T = ( p + N ) * (size_seg

 

/ bandwidth + latency )
= ( p + size_ckpt

 

/ size_seg) * (size_seg

 

/ bandwidth + latency )
>= size_ckpt

 

/ bandwidth * (1 + O ( sqrt

 

( latency * p / size_ckpt

 

)))

≈ size_ckpt

 

/ bandwidth

processor 0: m[0]

+
processor 1: m[1]

+
processor 2: m[2]

װ 

ckpt processor:

m[0][0]

m[0][0]+m[1][0]

m[0][0]+m[1][0]+m[2][0]

m[0][1]

m[0][1]+m[1][1]

m[0][2]

step0                    step1                        step2    step3

m[0][1]+m[1][1]+m[2][1]

m[0][2]+m[1][2]

m[0][3]



Survive Multiple Failures by Reed-Solomon Encoding

P1

P2

Pn

C1

Cm

C1

 

= a11

 

* P1

 

+  . . .  + a1n

 

* Pn

Cm

 

= am1

 

* P1

 

+  . . .  + amn

 

* Pn

If there are k (<= m) processes failed, then the m equalities become

m equations with k unknowns
By appropriately choosing A, the lost data can be recovered by solving the m equations.

The checkpoint overhead (assuming pipelined encoding):

T ≈

 

m * size_ckpt

 

/ bandwidth

Compute Procs Checkpoint Procs
Cm

Key idea: establish m equalities by m encodings

.

.

.

RS

RS



Reed-Solomon Encoding:
 Checkpoint into Neighbor Processes

In order to tolerate m failures, divide all processes into subgroup of size

m ( m+1 )
Within each subgroup, save each of the m encodings into (m+1 ) different processes.

The checkpoint overhead (assuming pipelined encoding):

T ≈

 

(m+1) * size_ckpt

 

/ bandwidth



How to Choose the Encoding Matrix A ?
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•

 

In order to be able to recover from any k

 

(k <= m) failures, the checkpoint 
encoding matrix A has to satisfy 

Any square sub-matrix of A is non-singular

•

 

How to find such an A ?  

–

 

Cauchy matrix: 

•

 

How to perform the multiplication of two process states ?
–

 

Process states have to be treated as bit-streams
–

 

Galois field arithmetic

 

has to be used in the computation
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PCG: Performance with Different MPI Implementations

T for 20000 iterations LAM-7.0.4 MPICH2-1.0 FT-MPI FT-MPI-1.2 ckpt/2000 iterations
(≈ 1 minute)

FT-MPI-1.2 exit 1 proc @10000 
iterations

15 comp. procs 522.5 536.3 517.8 518.9 521.7
30 comp. procs 532.9 542.9 532.2 533.3 537.5

60 comp. procs 545.5 553.0 546.5 547.8 554.2
120 comp. procs 674.3 624.4 622.9 624.4 637.1

PCG Performance with Different MPI Implementations
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Platform: 64 dual-processor 2.4 GHz AMD Opteron

 

nodes with Gigabit interconnect. 
Size of checkpoint per processes: ~ 0.25 MBytes



PCG: the Overhead for Checkpoint and Recovery

PCG Perforamce Overhead for Checkpoint and Recovery
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Run PCG for 5000 iterations and take checkpoint every 1000 iterations (~5 minutes).
Simulate a failure of one node by exiting 4 processes at the 3000-th iteration.
Size of checkpoint per processes: ~ 25 Mbytes.

Time (Seconds) T_tot T_ckpt T_rcvr_data T_rcvr_ftmpi
60 procs 1441.7 8.0 9.8 24.8
120 procs 1490.5 9.2 9.9 42.1
240 procs 1557.5 9.2 10.0 77.2
480 procs 1697.0 9.7 10.1 146.1
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Checkpoint-Free Fault Tolerance

•

 

Assume
–

 

we are running a parallel program where Pi

 

(t) denotes the data on the 
ith

 

processor at time t
–

 

P1

 

(t)+ P2

 

(t)+ …

 

+ Pn

 

(t)  = Pn+1

 

(t)  for any t

•

 

If the first processor fails, how can we recover the lost data P1

 

(t) ?
–

 

Answer: P1

 

(t) = Pn+1

 

(t)

 

-

 

P2

 

(t) -

 

…

 

-

 

Pn

 

(t)

•

 

Question 1: does this kind of special relationship

 

exist in non-trivial 
applications ?
–

 

YES: In many iterative methods, it does exist !

•

 

Question 2: If such a relationship does not exist, is it possible for us 
create this kind of special relationship

 

on purpose ?
–

 

Sometimes YES: For some programs doing dense linear algebra 
computations, such a relationship can be created by performing 
computations with encoded data



Checkpoint-Free Fault Tolerance for Iterative Methods
 (SIAM: SISC 2007)

•

 

Assume 
–

 

we are solving A  * x = b by iterative methods
–

 

r = b –

 

A * x is maintained in memory

•

 

In a parallel environment,  r = b –

 

A * x  can be rewrite as

•

 

If the ith

 

processor fails, then both ri

 

and xi become unknown 

–

 

xi

 

can be recovered accurately unless aki

 

is singular for ALL k ≠

 

i

–

 

If only aii

 

is non-singular, set ri

 

= 0
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Checkpoint-Free Fault Tolerance for Dense Linear Algebra

Algorithm-based Fault Tolerance
Abraham (UTexas), 1984:

If        A   *  B   = C
Then     A c * B r = C f

Checksum is maintained in 
final

 

computation results



Is the Checksum Maintained During
 

Computation?

•

 

NOT

 

maintained 
–

 

Cannon’s

 

algorithm
–

 

Fox’s

 

algorithm

•

 

Maintained  
–

 

Outer

 

product version algorithm

•

 

Outer product version is usually used in today’s HPC practice

NO
 

YES



Checkpoint-Free Fault Tolerance for ScaLAPACK
 (IEEE: TPDS to appear)

•

 

Define the row distributed checksum matrix of M as 

•

 

Define the column distributed checksum matrix of M as

•

 

Define the full distributed checksum matrix of M as
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An Example: ScaLAPACK
 

Matrix-Matrix Multiplication

•

 

Theorem:  
At the end of each iteration, the checksum relationships  
in A r, B c, and C f are still maintained

•

 

Conclusion
–

 

Single failure during computation can be recovered from the checksum
–

 

By using a floating-point version Reed-Solomon code, multiple failures can be 
tolerated

Ac
j B r j T

b

b
Ac

B r

= +C f ( j+1) C f ( j ) Ac
j B r j 

TAt the jth iteration:

PDGEMM: C = C + A * B

FT-PDGEMM operates 
on Ar, Bc

 

and Cf



Matrix Multiplication: Overhead and Scalability Analysis

•

 

The overhead (%) for constructing Checksum at the beginning 

•

 

The overhead (%) for computation due to larger size of matices

•

 

The overhead (%) for recovery after a failure 

•

 

Note that
–

 

O (   1 / ( p*m )   )            0,   as p, m          



PDGEMM: the Overhead for Fault Tolerance 
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•

 

Remember that the percentage of overhead for fault tolerance is

–

 

O (   1 / ( p*n )   )             0,  as p          



PDGEMM: The Overhead (%) for Calculating Encodings

•

 

Note that the overhead for encoding is 

–

 

O (   1 / ( p*n )   )             0,  as p          
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PDGEMM: The Overhead for Performing Computation 
with Encoded Matrices

•

 

Note that the overhead for performing computation with encoded 
matrices is

–

 

O (   1 / ( p*n )   )             0,  as p          

Overhead for Performing Computations on Encoded

Matrices
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PDGEMM: The Overhead for Recovering 
FT-MPI Environment

•

 

Note that the time to recover FT-MPI
–

 

is  currently O (   p2

 

), but will be improved to O(  log p  ) soon
–

 

is negligible ( < 0.2% ) compared with the time to recover 
application data
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PDGEMM: The Overhead for Recovering 
Application Data

•

 

Note that the overhead for recovering the application data is 

–

 

O (   1 / ( p*n )   )             0,  as p          
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Floating-Point Codes to Tolerate Multiple Failures
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•

 

In order to be able to recover from any k (k <= m) failures, the

 

weight 
matrix A has to satisfy 

Any square sub-matrix of A is non-singular

•

 

To maintain the checksum relationship
–

 

Floating-point arithmetic

 

has to be used when calculating encodings

•

 

Due to round-off errors in floating-point computations
Require any square sub-matrix of A is well-conditioned

•

 

Can we use Cauchy, Vantermonde, DFT matrices ?  No!



Floating-Point Codes Based on Random Matrices

 

  .981.0
1||

log)(log

1||
414.6

2
1)(Pr1||

245.0

2
1

10210

1||

2

1||

























































mn
nGE

x
mn
n

xG
x

mn
n

nm

mn

nm

mn

•

 

In our fault tolerant applications:

Assume we are running an application on a 100K-processor

 

system, and tolerating   
20 concurrent failures. If there are 10 concurrent failures actually occur, then

(1). On average, we will loss about 1 decimal digit in recovery
(2). The probability to lose 2 decimal digits is less than 10 – 10

•

 

It is well-known Gaussian random matrices are well-conditioned with high probability.

•

 

Any sub-matrix of a Gaussian random matrix G is still a Gaussian random matrix
–

 

Therefore, any square sub-matrix of G is well conditioned with high probability

•

 

How well-conditioned a Gaussian random matrix is?

( SIAM: SIMAX 2005 )



Why Gaussian Random Matrices are so Good ? 

•

 

The condition number of a matrix can be treated as a measure of the 
degree of linear independence of the columns of the matrix
–

 

Dependent:  k = ∞;  Orthogonal: k = 1;

•

 

Uniformly-distributed points on spheres produce good degree of linear 
independence

•

 

Gaussian distribution in Rn

 

is equivalent to Uniform distribution in Sn-1 

(Knuth 69)



Real Number Codes from Grassmannian
 

Frames

Maximize the minimum angle 
between columns of the matrix

Distributing points on sphere appropriately is 
usually difficult

Stephen Smale

 

@ Berkeley: 18 unsolved 
math problems in 21st century

Question #7: distribution of points on the 
2-sphere

No analytical solution available except for
very few combination of N and d 



Best Line Packing in Grassmannian
 

Space

•

 

Maximize the minimum angle between pair of vectors
–

 

Packing lines in Grassmannian

 

space

•

 

Neil J. A. Sloane @ AT &T Research
–

 

Known optimal line packing for selected m,and

 

n
–

 

For most m and n: it is unknown
–

 

Computational approximations
–

 

http://www.research.att.com/~njas/grass/grassTab.html

•

 

Grassmannian

 

Codes 
–

 

Does NOT guarantee sub-matrices are well conditioned
–

 

It is even possible to contain singular

 

sub-matices

http://www.research.att.com/~njas/grass/grassTab.html


Real
 

Number Codes with Optimal Numerical Stability
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•

 

Recovery accuracy 
–

 

NOT directly related to the correlation of pair of vectors
–

 

BUT more directly related to the condition number of the coefficient matrix
–

 

The coefficient matrix may be any square sub-matrix of G

•

 

Real number codes with optimal numerical stability 
–

 

Optimize the recovery accuracy for the worst case scenario
–

 

Minimize maximum condition number of the coefficient matrix
–

 

Defined optimal real number codes as G that satisfies



Optimal codes for 2 erasures

•

 

There is NO

 

arbitrarily large matrix that satisfys
Any sub-matrix of the matrix is well conditioned

•

 

It is impossible even for  the best 2-erasure codes to correct ALL possible 
2-erasures when the number of data items (processors) is large
–

 

The introduced numerical errors can be arbitrarily large

)(  n



Optimal codes for 2 erasures

•

 

In order to  guarantee to correct ALL possible 2-erasures in IEEE standard 
754  floating point numbers (16 digits of accuracy) with k digits of accuracy
–

 

The total number of data items (processors) n must satisfy

•

 

When the number of data items (or pocessors) is larger than 10^(16-k)
–

 

100% recovery can be guaranteed by dividing data items (or processors) into 
subgroup of less than 10^(16-k) items

)(  n



Experimental Results: Worst Case Comparison 

Random 47.2541 96.3024 111.9643 161.5512 217.1479
Grassmannian 0.5334*10^17 0.7204*10^17 2.3102* 0^17 2.3102*10^17 Inf
Optimal 14.7503 15.6580 16.1104 16.1609 16.5355

Tolerate 3 failures in 10 numbers: 120 possible combinations. 
Compare worst 5 condition numbers of all possible 3X3 sub-matrices

Random:

Grassmannian
(Sloane@A&TT)

Optimal



Distribution of all 120 condition numbers: 
Random vs

 
Optimal



Distribution of all 120 condition numbers: 
Grassmannian

 
vs

 
Optimal



Conclusions and Future Work
•

 

Several scalable fault tolerance techniques have been developed to survive a small 
number of process failures in large parallel computing.

–

 

Extended the existing diskless checkpointing technique to improve the 
scalability in large scale computing

–

 

Designed checkpoint-free fault tolerance technique for parallel matrix 
computations

–

 

Developed a class of numerically stable floating-point erasure codes to help 
to survive multiple simultaneous processes failures

•

 

Experiment results demonstrate that these techniques are highly scalable.

•

 

Future work: relieve the burden of FT from the application programmer

–

 

Incorporate the scalable checkpointing

 

technique into the Open MPI library

–

 

Build the checkpoint-free technique into ScaLAPACK

 

and PETSc

 

(from ANL)



Questions?
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