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Problem Statement

MPI widely accepted in scientific computing
— But no fault recovery method in MPI standard

Trends in HPC: high end systems with > 100,000 processors
— MTBF/I becomes shorter

Frequently deployed C/R helps but…
— 60% overhead on C/R [I.Philp HPCRI’05]

—100 hrs job -> 251 hrs
— Must restart all job tasks

– Inefficient

 

if only one (few) node(s) fails
– Staging overhead

— Requeuing

 

penalty

Transparent C/R:

Non-transparent C/R: Explicit invocation of checkpoint routines
– LA-MPI [IPDPS 2004] / FT-MPI [EuroPVM-MPI 2000]

— Coordinated: LAM/MPI w/ BLCR [LACSI ’03]
— Uncoordinated, Log based: MPICH-V [SC 2002]
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Our Solution

Job-pause service – reactive migration
— Integrate group communication to detect node failure
— Processes on live nodes

 

remain active

 

(roll back to last checkpoint)
— Only processes on failed nodes

 

dynamically replaced by spares 
(resumed from the last checkpoint)

Proactive live migration with failure prediction
— Processes on live nodes

 

remain active (no rollback, no checkpoint)
— Only processes on “unhealthy”

 

nodes

 

are lively migrated to spares

Hybrid full/incremental checkpoint/restart
— Only the subset of

 

modified pages checkpointed

 

(incremental)
— Incremental checkpoints complement full checkpoints
— Fast restart

 

(any page only written once)
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LAM-MPI Overview

Modular, component-based architecture
— 2 major layers
— Daemon-based RTE: lamd
— “Plug in”

 

C/R

 

to MPI SSI 
framework:

— Coordinated C/R & support BLCR

Example: A two-way  
MPI job on two nodesRTE:

 

Run-time Environment
SSI:

 

System Services Interface
RPI: Request Progression Interface
MPI: Message Passing Interface
LAM: Local Area Multi-computer
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BLCR Overview

Kernel-based C/R: Can save/restore almost all resources

Implementation: Linux kernel module, allows upgrades & bug 
fixes w/o reboot

Process-level C/R facility: single MPI application process

Provides hooks used for distributed C/R: LAM-MPI jobs
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Phase 1: a Job-Pause Service
Integrate group communication

— Add/delete nodes
— Detect node failures automatically

Processes on live nodes remain active (roll back to last checkpoint)
Only processes on failed nodes dynamically replaced by spares

resumed from the last checkpoint

Hence:
— no restart of entire job
— no staging overhead
— no job requeue

 

penalty
— no Lam RTE reboot

pause

migrate

1 2
3
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Process Migration – LAM/MPI

Change addressing information of migrated process
— in process itself
— in all other processes

Use node id (not IP) for addressing information

No change to BLCR for Process Migration n0 n2n1 n3

mpirun

X

Update addressing information at run time

3.

 

All processes update their process list
2.

 

Coordinator broadcasts new location
He is 
on 
node 3

I am 
on 
node 3

1.

 

Migrated process tells coordinator 
(mpirun) about its new location
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Experimental Framework

Experiments conducted on
— Opt cluster: 16 nodes, 2 core, dual Opteron

 

265, 1 Gbps

 

Ether
— Fedora Core 5 Linux x86_64
— Lam/MPI + BLCR w/ our extensions

Benchmarks
— NAS V3.2.1 (MPI version)

– run 5 times, results report avg.
– Class C (large problem size) used
– BT, CG, EP, FT, LU, MG and SP benchmarks
– IS run is too short



13

Job Migration Overhead

69.6% < job restart + lam reboot
NO LAM Reboot
No requeue penalty

Transparent continuation of exec

on 16 nodes

— Less staging overhead

0
1
2
3
4
5
6
7
8
9

10

BT CG EP FT LU MG SP

Se
co

nd
s

Job Pause and Migrate LAM Reboot Job Restart
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Phase 2: Proactive Live Migration

Processes on live nodes remain active
Only processes on “unhealthy” nodes are lively migrated to spares

Hence, avoid:
— High overhead on C/R
— Restart of entire job

– Staging overhead
— Job requeue penalty
— Lam RTE reboot

New approach

failure

live 
migration

lamboot
n0 n2n1 n3

mpirun
failure 

predicted

High failure prediction accuracy with a prior warning window: 
— >70% reported [Gu

 

et. Al, ICPP’08] [R.Sahoo

 

et.al

 

KDD ’03]
— Active research field
— Premise for live migration
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Our Design & Implementation – LAM/MPI

Per-node health monitoring mechanism
— Baseboard management controller 

(BMC)
— Intelligent platform management 

interface (IPMI) 

NEW: Decentralized scheduler
— Integrated into lamd
— Notified by BMC/IPMI
— Migration destination determination
— Trigger migration
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Live Migration Mechanism – LAM/MPI & BLCR

MPI RTE setup

MPI Job running

Live migration

Job exec. resume

nodes

n0 n2n1 n3
lamd

scheduler
lamd

scheduler
lamd

scheduler
lamd

scheduler

Step 3 can be omitted: live migration vs. stop&copy
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Migration Overhead and Duration

Migration Overhead Migration Duration

NPB Class C on 16 Nodes

Live: 0.08-2.98% overhead Stop&copy: 0.09-6%
Penalty of shorter downtime of live migration: prolonged precopy

— No significant impact to job run time, long prior warning window

 required

Overhead: difference of job run time w/ and w/o migration
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Page Access Pattern & Iterative Migration

Page access pattern of FT Iterative live migration of FT

Page write patterns are in accord with aggregate amount of 
transferred memory

FT: 138/384MB -> 1200/4600 pages/.1
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Phase 3: Current Work –
 

Hybrid Full/Incr C/R

Incremental checkpoint
— Dirty pages saved only

Hence:
— Reduced I/O 

bandwidth requirement
— Less storage space
— Lower rate of full 

checkpoint

Fast restart

Hybrid full/incr. Chkpt

TICK [SC05] etc.:
for single process, 
not for MPI tasks
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Incremental Checkpoint – LAM/MPI

MPI RTE setup

MPI Job running

Incr. Chkpt

Job exec. resume
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Fast Restart

Recovery scans all checkpoints in reverse sequence
1.

 

Allows the recovery of the last stored version of a page
2.

 

Any page only needs to be written once

Overhead is equivalent to that of restoring from a single, full 
checkpoint

Pi: memory page i



24

Outline

Problem vs. Our Solution
Overview of LAM/MPI and BLCR
Phase 1: a Job-Pause Service
Phase 2: Proactive Live Migration
Phase 3: Hybrid Full/Incremental Checkpoint/Restart
Related work
Conclusion
Future Work
Publications



25

Related Work

Fault model: Evaluation of FT policies [Tikotekar et. Al, Cluster07]
Process migration: MPI-Mitten [CCGrid06]

Incremental checkpoint: for single process, not for MPI tasks
— TICK [SC05] etc.

Failure prediction: Predictive management [Gu et. Al, ICPP08] [Gu
et. Al, ICDCS08] [Sahoo et. Al, KDD03]

Transparent C/R
— LAM/MPI w/ BLCR [S.Sankaran et.al LACSI ’03]

–Process Migration: scan & update checkpoint files [Cao et. Al, ICPADS, 05]
still requires restart of entire job

— Log based (Log msg

 

+ temporal ordering): MPICH-V [SC 2002]
Non-transparent C/R: Explicit invocation of checkpoint routines

– LA-MPI [IPDPS 2004] / FT-MPI [EuroPVM-MPI 2000]
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Conclusion

— No job requeue

 

overhead/ Less staging cost/ No LAM Reboot

Design generic for any MPI implementation / process C/R
Implemented over LAM-MPI w/ BLCR

Job-Pause 

Live migration

Incr. chkpt

Cut the number of chkpts in half when 70% faults 
handled proactively 
Low overhead: Live: 0.08-2.98% Stop&copy: 0.09-6%

— No job requeue

 

overhead/ Less staging cost/ No LAM Reboot

Completely transparent
Low overhead: 69.6% < job restart + lam reboot

Lower rate of full checkpoint 
Restart equal to that from one single full chkpt
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Future Work

— Create/assess applications with varying memory pressure to 
measure the tradeoff

 

between full & incremental chkpts
Live migration: (journal extensions)
— Heuristic algorithm

 

for tradeoff

 

between live & frozen migrations
— Back migration

 

upon node recovery

A reliable FT framework
— Combine the job pause, live migration and incremental checkpoint

Incremental checkpoint: (target a conference paper)
— Finish debugging + evaluate w/ NPB

Hybrid full/incr. chkpt: (journal extensions)
— Optimal/heuristic algorithm for full/incr. chkpt

 

placement
— Replace full chkpt

 

with live chkpt

System pre-deployment
— Pre-deploy process images on spare nodes
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