
Process-Level Fault Tolerance for Job
Healing in HPC Environments

Chao Wang, Frank Mueller

Department of Computer Science

North Carolina State University

Stephen L. Scott, Christian Engelmann

Systems Research Team (SRT)

Computer Science Group

Oak Ridge National Laboratory

HPC Resiliency Summit: Workshop on Resiliency for Petascale HPC
Los Alamos Computer Science Symposium
October 15, 2008, Santa Fe, New Mexico

2

Outline

Problem vs. Our Solution
Overview of LAM/MPI and BLCR
Phase 1: a Job-Pause Service
Phase 2: Proactive Live Migration
Phase 3: Hybrid Full/Incremental Checkpoint/Restart
Related work
Conclusion
Future Work
Publications

3

Outline

Problem vs. Our Solution
Overview of LAM/MPI and BLCR
Phase 1: a Job-Pause Service
Phase 2: Proactive Live Migration
Phase 3: Hybrid Full/Incremental Checkpoint/Restart
Related work
Conclusion
Future Work
Publications

4

Problem Statement

MPI widely accepted in scientific computing
— But no fault recovery method in MPI standard

Trends in HPC: high end systems with > 100,000 processors
— MTBF/I becomes shorter

Frequently deployed C/R helps but…
— 60% overhead on C/R [I.Philp HPCRI’05]

—100 hrs job -> 251 hrs
— Must restart all job tasks

– Inefficient

if only one (few) node(s) fails
– Staging overhead

— Requeuing

penalty

Transparent C/R:

Non-transparent C/R: Explicit invocation of checkpoint routines
– LA-MPI [IPDPS 2004] / FT-MPI [EuroPVM-MPI 2000]

— Coordinated: LAM/MPI w/ BLCR [LACSI ’03]
— Uncoordinated, Log based: MPICH-V [SC 2002]

5

Our Solution

Job-pause service – reactive migration
— Integrate group communication to detect node failure
— Processes on live nodes

remain active

(roll back to last checkpoint)
— Only processes on failed nodes

dynamically replaced by spares
(resumed from the last checkpoint)

Proactive live migration with failure prediction
— Processes on live nodes

remain active (no rollback, no checkpoint)
— Only processes on “unhealthy”

nodes

are lively migrated to spares

Hybrid full/incremental checkpoint/restart
— Only the subset of

modified pages checkpointed

(incremental)
— Incremental checkpoints complement full checkpoints
— Fast restart

(any page only written once)

6

Outline

Problem vs. Our Solution
Overview of LAM/MPI and BLCR
Phase 1: a Job-Pause Service
Phase 2: Proactive Live Migration
Phase 3: Hybrid Full/Incremental Checkpoint/Restart
Related work
Conclusion
Future Work
Publications

7

LAM-MPI Overview

Modular, component-based architecture
— 2 major layers
— Daemon-based RTE: lamd
— “Plug in”

C/R

to MPI SSI
framework:

— Coordinated C/R & support BLCR

Example: A two-way
MPI job on two nodesRTE:

Run-time Environment
SSI:

System Services Interface
RPI: Request Progression Interface
MPI: Message Passing Interface
LAM: Local Area Multi-computer

8

BLCR Overview

Kernel-based C/R: Can save/restore almost all resources

Implementation: Linux kernel module, allows upgrades & bug
fixes w/o reboot

Process-level C/R facility: single MPI application process

Provides hooks used for distributed C/R: LAM-MPI jobs

9

Outline

Problem vs. Our Solution
Overview of LAM/MPI and BLCR
Phase 1: a Job-Pause Service
Phase 2: Proactive Live Migration
Phase 3: Hybrid Full/Incremental Checkpoint/Restart
Related work
Conclusion
Future Work
Publications

10

Phase 1: a Job-Pause Service
Integrate group communication

— Add/delete nodes
— Detect node failures automatically

Processes on live nodes remain active (roll back to last checkpoint)
Only processes on failed nodes dynamically replaced by spares

resumed from the last checkpoint

Hence:
— no restart of entire job
— no staging overhead
— no job requeue

penalty
— no Lam RTE reboot

pause

migrate

1 2
3

11

Process Migration – LAM/MPI

Change addressing information of migrated process
— in process itself
— in all other processes

Use node id (not IP) for addressing information

No change to BLCR for Process Migration n0 n2n1 n3

mpirun

X

Update addressing information at run time

3.

All processes update their process list
2.

Coordinator broadcasts new location
He is
on
node 3

I am
on
node 3

1.

Migrated process tells coordinator
(mpirun) about its new location

12

Experimental Framework

Experiments conducted on
— Opt cluster: 16 nodes, 2 core, dual Opteron

265, 1 Gbps

Ether
— Fedora Core 5 Linux x86_64
— Lam/MPI + BLCR w/ our extensions

Benchmarks
— NAS V3.2.1 (MPI version)

– run 5 times, results report avg.
– Class C (large problem size) used
– BT, CG, EP, FT, LU, MG and SP benchmarks
– IS run is too short

13

Job Migration Overhead

69.6% < job restart + lam reboot
NO LAM Reboot
No requeue penalty

Transparent continuation of exec

on 16 nodes

— Less staging overhead

0
1
2
3
4
5
6
7
8
9

10

BT CG EP FT LU MG SP

Se
co

nd
s

Job Pause and Migrate LAM Reboot Job Restart

14

Outline

Problem vs. Our Solution
Overview of LAM/MPI and BLCR
Phase 1: a Job-Pause Service
Phase 2: Proactive Live Migration
Phase 3: Hybrid Full/Incremental Checkpoint/Restart
Related work
Conclusion
Future Work
Publications

15

Phase 2: Proactive Live Migration

Processes on live nodes remain active
Only processes on “unhealthy” nodes are lively migrated to spares

Hence, avoid:
— High overhead on C/R
— Restart of entire job

– Staging overhead
— Job requeue penalty
— Lam RTE reboot

New approach

failure

live
migration

lamboot
n0 n2n1 n3

mpirun
failure

predicted

High failure prediction accuracy with a prior warning window:
— >70% reported [Gu

et. Al, ICPP’08] [R.Sahoo

et.al

KDD ’03]
— Active research field
— Premise for live migration

16

Our Design & Implementation – LAM/MPI

Per-node health monitoring mechanism
— Baseboard management controller

(BMC)
— Intelligent platform management

interface (IPMI)

NEW: Decentralized scheduler
— Integrated into lamd
— Notified by BMC/IPMI
— Migration destination determination
— Trigger migration

17

Live Migration Mechanism – LAM/MPI & BLCR

MPI RTE setup

MPI Job running

Live migration

Job exec. resume

nodes

n0 n2n1 n3
lamd

scheduler
lamd

scheduler
lamd

scheduler
lamd

scheduler

Step 3 can be omitted: live migration vs. stop©

18

Migration Overhead and Duration

Migration Overhead Migration Duration

NPB Class C on 16 Nodes

Live: 0.08-2.98% overhead Stop©: 0.09-6%
Penalty of shorter downtime of live migration: prolonged precopy

— No significant impact to job run time, long prior warning window

 required

Overhead: difference of job run time w/ and w/o migration

19

Page Access Pattern & Iterative Migration

Page access pattern of FT Iterative live migration of FT

Page write patterns are in accord with aggregate amount of
transferred memory

FT: 138/384MB -> 1200/4600 pages/.1

20

Outline

Problem vs. Our Solution
Overview of LAM/MPI and BLCR
Phase 1: a Job-Pause Service
Phase 2: Proactive Live Migration
Phase 3: Hybrid Full/Incremental Checkpoint/Restart
Related work
Conclusion
Future Work
Publications

21

Phase 3: Current Work –

Hybrid Full/Incr C/R

Incremental checkpoint
— Dirty pages saved only

Hence:
— Reduced I/O

bandwidth requirement
— Less storage space
— Lower rate of full

checkpoint

Fast restart

Hybrid full/incr. Chkpt

TICK [SC05] etc.:
for single process,
not for MPI tasks

22

Incremental Checkpoint – LAM/MPI

MPI RTE setup

MPI Job running

Incr. Chkpt

Job exec. resume

23

Fast Restart

Recovery scans all checkpoints in reverse sequence
1.

Allows the recovery of the last stored version of a page
2.

Any page only needs to be written once

Overhead is equivalent to that of restoring from a single, full
checkpoint

Pi: memory page i

24

Outline

Problem vs. Our Solution
Overview of LAM/MPI and BLCR
Phase 1: a Job-Pause Service
Phase 2: Proactive Live Migration
Phase 3: Hybrid Full/Incremental Checkpoint/Restart
Related work
Conclusion
Future Work
Publications

25

Related Work

Fault model: Evaluation of FT policies [Tikotekar et. Al, Cluster07]
Process migration: MPI-Mitten [CCGrid06]

Incremental checkpoint: for single process, not for MPI tasks
— TICK [SC05] etc.

Failure prediction: Predictive management [Gu et. Al, ICPP08] [Gu
et. Al, ICDCS08] [Sahoo et. Al, KDD03]

Transparent C/R
— LAM/MPI w/ BLCR [S.Sankaran et.al LACSI ’03]

–Process Migration: scan & update checkpoint files [Cao et. Al, ICPADS, 05]
still requires restart of entire job

— Log based (Log msg

+ temporal ordering): MPICH-V [SC 2002]
Non-transparent C/R: Explicit invocation of checkpoint routines

– LA-MPI [IPDPS 2004] / FT-MPI [EuroPVM-MPI 2000]

26

Outline

Problem vs. Our Solution
Overview of LAM/MPI and BLCR
Phase 1: a Job-Pause Service
Phase 2: Proactive Live Migration
Phase 3: Hybrid Full/Incremental Checkpoint/Restart
Related work
Conclusion
Future Work
Publications

27

Conclusion

— No job requeue

overhead/ Less staging cost/ No LAM Reboot

Design generic for any MPI implementation / process C/R
Implemented over LAM-MPI w/ BLCR

Job-Pause

Live migration

Incr. chkpt

Cut the number of chkpts in half when 70% faults
handled proactively
Low overhead: Live: 0.08-2.98% Stop©: 0.09-6%

— No job requeue

overhead/ Less staging cost/ No LAM Reboot

Completely transparent
Low overhead: 69.6% < job restart + lam reboot

Lower rate of full checkpoint
Restart equal to that from one single full chkpt

28

Outline

Problem vs. Our Solution
Overview of LAM/MPI and BLCR
Phase 1: a Job-Pause Service
Phase 2: Proactive Live Migration
Phase 3: Hybrid Full/Incremental Checkpoint/Restart
Related work
Conclusion
Future Work
Publications

29

Future Work

— Create/assess applications with varying memory pressure to
measure the tradeoff

between full & incremental chkpts
Live migration: (journal extensions)
— Heuristic algorithm

for tradeoff

between live & frozen migrations
— Back migration

upon node recovery

A reliable FT framework
— Combine the job pause, live migration and incremental checkpoint

Incremental checkpoint: (target a conference paper)
— Finish debugging + evaluate w/ NPB

Hybrid full/incr. chkpt: (journal extensions)
— Optimal/heuristic algorithm for full/incr. chkpt

placement
— Replace full chkpt

with live chkpt

System pre-deployment
— Pre-deploy process images on spare nodes

30

Outline

Problem vs. Our Solution
Overview of LAM/MPI and BLCR
Phase 1: a Job-Pause Service
Phase 2: Proactive Live Migration
Phase 3: Hybrid Full/Incremental Checkpoint/Restart
Related work
Conclusion
Future Work
Publications

31

Publications
•

“MOLAR: Adaptive Runtime Support for High-end Computing Operating and Runtime
Systems"

by C. Engelmannn, S. Scott, D. Bernholdt, N. Gottumukkala, C. Leangsuksun, J. Varma, C.
Wang, F. Mueller, A. Shet

and P. Sadayappan, ACM SIGOPS OSR 2006
•

“Scalable, Fault-Tolerant Membership for MPI Tasks on HPC Systems"

by J. Varma, C.
Wang, F. Mueller, C. Engelmannn, and S. Scott, ICS 2006

•

“A Job Pause Service under LAM/MPI+BLCR for Transparent Fault Tolerance"

by C.
Wang, F. Mueller, C. Engelmannn, and S. Scott, IPDPS 2007

•

“Proactive Process-Level Live Migration in HPC Environments"

by C. Wang, F. Mueller, C.
Engelmannn, and S. Scott, Supercomputing 2008

•

“Optimizing Center Performance through Coordinated Data Staging, Scheduling and
Recovery"

by Z. Zhang, C. Wang, S. Vazhkudai, X. Ma, G. Pike, J. Cobb and F. Mueller,
Supercomputing 2007

•

“On-the-fly Recovery of Job Input Data in Supercomputers"

by C. Wang, Z. Zhang, S.
Vazhkudai, X. Ma and F. Mueller, ICPP 2008

•

“Improving the Availability of Supercomputer Job Input Data Using

Temporal
Replication"

by C. Wang, Z. Zhang , X. Ma, S. Vazhkudai

and F. Mueller, ready to submit…

•

“Process-Level Fault Tolerance for Job Healing in HPC Environments"

Supercomputing
2008 Doctoral Research Showcase: 2007, C. Wang, ACM/IEEE HPC Fellows

Recovery/Replication of Job Input Data in Supercomputers:

32

Process-Level Fault Tolerance for Job
Healing in HPC Environments

Chao Wang, Frank Mueller

Department of Computer Science

North Carolina State University

Stephen L. Scott, Christian Engelmann

Systems Research Team (SRT)

Computer Science Group

Oak Ridge National Laboratory

HPC Resiliency Summit: Workshop on Resiliency for Petascale HPC
Los Alamos Computer Science Symposium
October 15, 2008, Santa Fe, New Mexico

	Slide Number 1
	Outline
	Outline
	Problem Statement
	Our Solution
	Outline
	LAM-MPI Overview
	Slide Number 8
	Outline
	Phase 1: a Job-Pause Service
	Process Migration – LAM/MPI
	Experimental Framework
	Job Migration Overhead
	Outline
	Phase 2: Proactive Live Migration
	Our Design & Implementation – LAM/MPI
	Live Migration Mechanism – LAM/MPI & BLCR
	Migration Overhead and Duration
	Page Access Pattern & Iterative Migration
	Outline
	Phase 3: Current Work – Hybrid Full/Incr C/R
	Incremental Checkpoint – LAM/MPI
	Fast Restart
	Outline
	Related Work
	Outline
	Conclusion
	Outline
	Future Work
	Outline
	Publications
	Slide Number 32

