
presented by

Towards Support for Fault Tolerance in
the MPI Standard

Gregory A. Koenig

Problem definition

•

Problem: The integrity of a component within a
running MPI job is compromised due to either a
hardware or software fault

•

Question: Can the MPI application continue to run
correctly?
−

Does the job have to abort?

−

If not, can the job continue to communicate?
−

Can there be a change in resources available to the job?

Problem definition

Disk B

Node 2

Disk A

Node 1

Network

Problem definition … in reality ☺

Disk B

Node 2Node 1

Network

What role should MPI play in recovery?

•

MPI does not provide application-level fault-tolerance

•

MPI should enable the survivability of MPI itself upon failure
of a hardware or software component

•

MPI provides:
−

Communication primitives

−

Management of groups of processes
−

Access to the file system

What role should MPI play in recovery?

•

Therefore, upon failure, MPI should

(limited by what is practical within the faulted system state):
−

Restore MPI communication infrastructure to a correct and
consistent state

−

Restore process groups to a well-defined state
−

Restore process connections to the file system

−

Provide hooks related to MPI communications needed by
other protocols that build on top of MPI such as…
•

Flushing the message system

•

Establishing network quiescence

•

Sending “piggyback” data (i.e., annotated user data)

•

Others things?

CURRENT WORKING
GROUP STATUS

7

Error reporting mechanisms
(being firmed up now)

•

By default, errors are associated with specific MPI requests
and are returned synchronously

Example:
Ret1 = MPI_Isend (comm=MPI_COMM_WORLD, dest=3, …

request=request3)
Link to 3 fails
Ret2 = MPI_Isend (comm=MPI_COMM_WORLD, dest=4,

…request=request4)
Ret3 = MPI_Wait (request=request4) // success
Ret4 = MPI_Wait (request=request3) // error returned in Ret4

Caller can then ask for more information about the failure

8

Error reporting mechanisms
(being firmed up now)

•

Allow the user to register event handlers that are invoked
asynchronously for specified…
−

Classes of failures (e.g., link failures)

−

Events associated with particular resources (e.g., failure of
a process in a particular communicator)

•

Errors are associated with communicators

•

Several open questions remain

(a couple are discussed later in the talk)

9

Error reporting mechanisms
(being firmed up now)

• A collective call has been proposed to check on the fault
status of a communicator
• No extra cost is incurred for consistency checks, unless

fault status is requested
• Provides a global communicator state just before the call is

made; if a fault happens in a process immediately after it
reports its status as “ok”, this fault will not be identified

10

Specific use case scenarios

•

Process failure in a client/server job

(client is a member of an inter-communicator)
−

Client process fails

−

Server is notified of failure
−

Server disconnects from the client inter-communicator and
continues to run

−

Client processes are terminated

11

Specific use case scenarios

•

Process failure in a client/server job

(client is a member of an intra-communicator)
−

Client process fails

−

Processes communicating with the failed process are
notified of its failure

−

Application specifies a response to failure
•

Abort

•

Continue with reduced process count, with the missing
process being labeled MPI_Proc_null in the communicator

•

Replace the failed process in the communicator
−

Suggestion: it might be useful to increase the size of the
communicator after a fault

12

Specific use case scenarios

•

Possible steps for continuing with a reduced process count
or replaced process
−

Mark affected communicator as being in an error state

−

Discard traffic associated with the failed process
−

“Repair” the communicator

−

Mark the communicator as running
−

Let the application resume

−

Application is responsible for restoring application state
•

Checkpoint/restart

•

Application regenerates state on it’s own

•

?

13

Open Questions

•

How much heavy-handedness is necessary at the standard
specification level to recover from failure in the middle of a
collective operation? Is this more than an implementation
issue? (Hint: Performance is the fly in the ointment here.)

•

What is the impact of “repairing” a communicator on the
implementation of collective algorithms? Is it necessary to
pay the cost of fault tolerance all the time?

14

Next Steps

•

Complete gathering use case scenarios

•

Flesh out the data-piggybacking ideas (needed for some
recovery mechanisms)

•

Develop first full cut at changes to the standard to support
recovering from failed processes

•

Prototype and test with applications

•

Revisit the proposed standard

15

For involvement in the process see:

http://meetings.mpi-forum.org/

16

	Towards Support for Fault Tolerance in the MPI Standard�
	Problem definition�
	Problem definition
	Problem definition … in reality 
	What role should MPI play in recovery?
	What role should MPI play in recovery?
	CURRENT WORKING GROUP STATUS
	Error reporting mechanisms�(being firmed up now)
	Error reporting mechanisms�(being firmed up now)
	Error reporting mechanisms�(being firmed up now)
	Specific use case scenarios
	Specific use case scenarios
	Specific use case scenarios
	Open Questions
	Next Steps
	Slide Number 16

