
http://ftg.lbl.gov/checkpoint

System-level Checkpoint/Restart

with BLCR

Paul Hargrove
(work with Eric Roman and Jason Duell)

checkpoint@lbl.gov

LACSS 2008
October 15, 2008 Santa Fe, New Mexico

http://ftg.lbl.gov/checkpoint

Introduction

Checkpoint. Save a process's state to a file descriptor.
Restart. Reconstruct the process from a file descriptor.
BLCR. Berkeley Lab Checkpoint Restart for Linux.

Project goals. What is BLCR's approach to CR?
Why use checkpoint/restart?

System design. How does BLCR work?

Current status. What does BLCR do now?

Plans. Where is BLCR going?

http://ftg.lbl.gov/checkpoint

Project Goals

Provide checkpoint/restart for Linux clusters running scientific workloads
Checkpoint and restart jobs (shell scripts) running MPI applications.
Support a wide variety of networks.

Fit easily into production systems
Run unmodified application source.
Run unmodified binaries where possible. No special compile/link in most cases.
Run on unpatched kernels (as a kernel module).
Run with unmodified system libraries (e.g. libc).

Unrelated features (ptrace, Unix domain sockets) have low implementation priority.

Why checkpoint?
We see three main scenarios: scheduling, fault tolerance and debugging.

http://ftg.lbl.gov/checkpoint

Usage Scenarios

Batch Scheduling.
C/R can be used to pre-empt and/or migrate running jobs.
Drain queues quickly for maintenance.
Increase system throughput by switching job mix between long jobs and wide jobs.
Increase system utilization by allowing the scheduler to correct for bad decisions.
Gang scheduling. Divide system time up into slots.
Priority scheduling. Run jobs with the highest priority.

Fault Tolerance.
Not every application can checkpoint itself.
Periodic checkpoints can reduce lost work in case of failure (but adds cost to

normal fault-free execution).
Reactive checkpoints can respond to non-yet-fatal problems (like loss of a fan).

Debugging.
Rollback execution to a checkpoint taken before a fault, restart with a debugger.

http://ftg.lbl.gov/checkpoint

Other Approaches

Application-based checkpointing.
Efficient: save only needed data as step completes.
Good for fault tolerance: bad for preemptive scheduling.
Requires per-application effort by programmer.

Library-based checkpointing.
Portable across operating systems.
Transparent to application (but may require relink, etc.) .
Can't (generally) restore all resources (ex: process IDs) .
Can’t checkpoint shell scripts.

Hypervisor (similar arguments for software suspend) .
Granularity is a full virtual machine.
Administrators have to maintain one VM per checkpoint.
Rollback. What happens to the disk state?
Debugging?
Coordination for distributed jobs is still necessary.
Scheduler integration.

http://ftg.lbl.gov/checkpoint

Implementation

BLCR provides single node checkpoint/restart through kernel modules and a
runtime library.
libcr.so: Full library: can register handlers, request checkpoints, etc.
OR libcr_run.so: Stub library with only a default checkpoint handler
Kernel modules: coordinates the process checkpoints, saves/restores kernel

data structures, interfaces with library and command line tools.
BLCR doesn’t provide built-in support for distributed runtime features

TCP sockets, bproc namespaces, etc.
Instead, BLCR provides hooks which allow apps and libraries to coordinate

checkpoints and restart distributed processes through callbacks.
So, the MPI library must know how to checkpoint; the user application does not.

http://ftg.lbl.gov/checkpoint

Basic Operation

Rough idea: Send the application a signal that tells it to call into BLCR.

A checkpoint request can come from the same process, or from another.
By default, user code doesn’t need to do anything to handle it.
If desired, user code may register a callback to handle it.
If desired, user code may block requests (critical sections).

http://ftg.lbl.gov/checkpoint

Status

Processes, process groups and sessions
Shell scripts (bash, tcsh, python, perl, ruby, ...) .
Multithreaded processes (pthreads with standard NPTL) .
Resources shared between processes are restored.
Restore PID and parent PID.

Files
Reopen files during restart: open, truncate, and seek.
Pipes and named FIFOs.
Files must exist in same location on filesystem.
Memory mapped files are remapped (incl. shared libs and executable).
Option to save shared libraries and executable.
Option for file path relocation.

http://ftg.lbl.gov/checkpoint

Supported Platforms

Linux kernel 2.6 kernels
Test with kernels from kernel.org,

Fedora, SuSE, and Ubuntu.
Support of custom patched kernels

through autoconf.
Architectures

x86, x86-64, ppc, ppc64 and ARM
Almost: Xen dom0 and domU

MPI Implementations
MVAPICH2
LAM/MPI 7.x (sockets and GM)
MPICH-V 1.0.x with sockets
OpenMPI
Cray Portals

Batch Queue Systems
TORQUE support

Available in recent
releases.
Have tested qhold, qrls,
and periodic checkpoints.

BLCR, Condor and Parrot
HOWTO available.

http://ftg.lbl.gov/checkpoint

Example 2: MPI Checkpoint/Restart

Step 1 (mpirun) and Step 2 (checkpoint)

1

2

http://ftg.lbl.gov/checkpoint

Example 2: MPI Checkpoint/Restart

The job terminates...

http://ftg.lbl.gov/checkpoint

Example 2: MPI Checkpoint/Restart

The job restarts...

http://ftg.lbl.gov/checkpoint

Work In Progress

Queue system support
BLCR w/ TORQUE + OpenMPI (they work individually).

Alternative handling of files
Allow checksum of file, with restart error if it has changed.
Allow saving contents of files (restore may either replace or rename) .
Support files that are not open at checkpoint time, but are specified as by

the checkpoint requester.

Improved I/O
On-the-fly compression of context files.
Direct I/O.

Other
Detailed error reporting (e.g. What file caused ENOENT?)
Zombie processes.

http://ftg.lbl.gov/checkpoint

Future Work

Future Work
Interested in other queue systems (LSF, SGE, SLURM, etc.) .
More MPI implementations (MPICH 2 support anticipated).
Vendor support (Quadrics)?
MPI support for partial/live migration.
Ship support with distributions (ROCKS, OSCAR) .
“rsync” algorithm for differential checkpoints.

We expect BLCR to be deployed in a production batch environment before
the end of the calendar year.

You should be able to install BLCR on your system and checkpoint your MPI
applications with it.

http://ftg.lbl.gov/checkpoint

Addressing the I/O Bottleneck

Concern
MTBF is shrinking.
Time to complete global checkpoint is growing (I/O dominates).
When they meet checkpoint/restart is no longer viable.

Some ideas we are working on
Compression: we find highly app-dependent results (mixed).
Incremental: use page tables to identify modified memory.
Differential: rsync-type mechanism to identify modified memory.
Memory exclusion: allow user or compiler to exclude dead memory.

Some ideas for others
More intelligent (non-global) checkpointing algorithms.
Checkpoint to local storage (low-cost solid state devices).
Checkpoint to memory or storage of near-by node.
Reactive in place of periodic as normal case.

http://ftg.lbl.gov/checkpoint

For More Information

http://ftg.lbl.gov/checkpoint
Papers (available from website):

“Design and Implementation of BLCR”: high-level system design,
including description of user API

“Requirements for Linux Checkpoint/Restart”: exhaustive list of Unix
features we will support (or not).

“A Survey of Checkpoint/Restart Implementations”: focusing on open
source versions that run on Linux

“The LAM/MPI Checkpoint/Restart Framework: System-Initiated
Checkpointing”: implementation with LAM/MPI

CIFTS
Coordinated Infrastructure for Fault Tolerant Systems
Parent project. Subject of the 11am talk by Rinku Gupta.
http://www.mcs.anl.gov/research/cifts/

	Slide Number 1
	Introduction
	Project Goals
	Usage Scenarios
	Other Approaches
	Implementation
	Basic Operation
	Status
	Supported Platforms
	Example 2: MPI Checkpoint/Restart
	Example 2: MPI Checkpoint/Restart
	Slide Number 12
	Work In Progress
	Future Work
	Addressing the I/O Bottleneck
	For More Information

