Accurate Prediction of
Soft Error Vulnerability of
Scientific Applications

Greg Bronevetsky

Post-doctoral Fellow
Lawrence Livermore National Lab

2

y

Application/System integrated infrastructure
can offer good performance, scalability

[Appllcatlon]
Checkpomt
Descrlptlon API
Smaller
Checkpomts BL(iR]
Checkpomt Optlmlzatlon
I
Coordination Protocol |— ©oPal, Local,
) Y Hybrid

— | Scalable Storage

Parallel file system
Node-local storage

4 _ N
Localized rollback recovery scales

with system size

e More localized —

g ™ // fewer checkpoints,
3 e — / restarts
ii &1 | — Hybrid-100 g
G Sy | —Hpbric0m -~ Don’t need
2o |l ,/ consistent
5 . / snapshots
e
; 1E5 / [— — — T T T T

TT SN be22 D ERE R AL d

Number of Processors TeemeRT

10 MTTF per processor

Accurate Prediction of
Soft Error Vulnerability of
Scientific Applications

Greg Bronevetsky

Post-doctoral Fellow
Lawrence Livermore National Lab

2

r
Soft error: one-time corruption of

system state

« Examples: Memory bit-flips, erroneous
computations

« Caused by
— Chip variability
— Charged particles passing through transistors

« Decay of packaging materials (Lead?%¢, Boron9)
* Fission due to cosmic neutrons

— Temperature, power fluctuations

r
Soft errors are a critical reliability

challenge for supercomputers

 Real Machines:
— ASCI Q: 26 radiation-induced errors/week

— Similar-size Cray XD1: 109 errors/week
(estimated)

— BlueGene/L: 3-4 L1 cache bit flips/day
* Problem grows worse with time

— Larger machines = larger error probability

— SRAMs growing exponentially more
vulnerable per chip

ﬂ
We must understand the impact of soft

errors on applications

» Soft errors corrupt application state
 May lead to crashes or corrupt output

 Need to detect/tolerate soft errors

— State of the art: checkers/correctors for
individual algorithms

— No general solution
* Must first understand how errors affect
applications
— ldentify problem
— Focus efforts

r
Prior work says very little about most

applications

 Prior fault analysis work focuses on
injecting errors into individual applications

— [Lu and Reed, SCO04]: Linux + MPICH +
Cactus, NAMD, CAM

— [Messer et al, ICSDNOO]: Linux + Apache and
_inux + Java (Jess, DB, Javac, Jack)

— [Some et al, AC02]: Lynx + Mars texture
segmentation application

* Where’s my application?

\

y
Extending vulnerability

characterization to more applications

« Goal: general purpose vulnerability
characterization

— Same accuracy as per-application fault
Injection
— Much cheaper
* |nitial steps
— Fault injection iterative linear algebra methods
— Library-based fault vulnerability analysis

y
Step 1: Analyzing fault vulnerability

of iterative methods

* Target domain:
solvers for sparse linear problem Ax=Db

e Goal:

understand error vulnerability of class of
algorithms

— Raw error rates
— Effectiveness of potential solutions

* Error model: memory bit-flips

Possible run outcomes

Success: <10% error
Silent Data Corruption (SDC): 210% error

Hang: method doesn't reach target
tolerance

Abort: SegFault or failed SparseLib check

N
Errors cause SDCs, Hangs, Aborts

in ~8-10%, each

20%

18% - | sDC |
16% - ® Hang
14% | mAbort
12%
10%
8%
6%
4%
2%
0%
BIiCG BICGSTA Cheby

y
Large scale applications vulnerable

to silent data corruptions

* Scaled to 1-day, 1,000-processor run of
application that only calls iterative method

0.12%

mSDC..

0.10%
=
£ 0.08%
0
8
o 0.06%
o
2 0.04%
(7))

0.00%

BiCG BICGSTA Cheby PR

10FIT/MB DRAM (1,000-5,000 Raw FIT/MB, 90%-98% effective error correction)

y N
Larger scale applications even more

vulnerable to silent data corruptions

« Scaled to 10-day, 100,000-processor run of
application that only calls iterative method

120%

m SDC Rate

100%
=
£ 80%
o]
3
S 60%
o
2 40%
()]
- l l l
0%
BiCG BIiCGSTA Cheby PR

10FIT/MB DRAM (1,000-5,000 Raw FIT/MB, 90%-98% effective error correction)

Q 4

Error Detectors

0.06% True Overhead vs SDC —
Error Detection

'----------------------------

0.05% Base

#Base

0.04%

0.03%

SDC Probability

0.02%

0.01%

0.00%
0% 20% 40% 60% 80% 100%

Overhead

Convergence detectors reduce
SDC at <20% overhead

0.06% True Overhead vs SDC —
Error Detection

GGS% ~i—— B-age ------------ i O | +B
= 0.04%
= A
— A AMD
2 N :
S 0.03% ~ A
Z A
o
W 0.02%

0.01%

0.00%

0% 20% 40% 60% 80% 100%

Overhead

ﬂ
Convergence detectors reduce

SDC at <20% overhead

0.06% True Overhead vs SDC
Error Detection
--------------------- - N = . e
0.05% ? Base
h 4 x AMD
>~ 0.04% &% X
= A
= X
8 A Lol A XAD
S 0.03% ah oy A
Z A
O
“» 0.02%
0.01%
0.00%
0% 20% 40% 60% 80% 100%
Overhead

N
Native detectors have little effect at

little cost

0.06% True Overhead vs SDC
w Error Detection oBase
x e
--------------------- - N = .
0.05% ¥:1<x Base |
ANMD
h 4
x

>~ 0.04% &% X | XAD
= A
E “; A X A
E EMD
o 0.03% h— =
Z A
o
W 0.02%

0.01%

0.00%

0% 20% 40% 60% 80% 100%
Overhead

y

Encoding-based detectors significantly
reduce SDC at high cost

True Overhead vs SDC

0.06%

0.05%

0.04%

0.03%

SDC Probability

0.02%

0.01%

0.00%

4

0%

Error Detection

20% 40% 60%
Overhead

{ AMD

xXAD

XND

®ABFT

100%

\

y

Encoding-based detectors significantly
reduce SDC at high cost

True Overhead vs SDC
[]

0.06%

0.05%

0.04%

0.03%

SDC Probability

0.02%

0.01%

0.00%

0%

20%

Error Detection

40% 60%
Overhead

#Base

XAD

XMD

®ABFT

+ECC

100%

\

a4 . .
First general analysis of error

vulnerability of algorithm class

* Vulnerability analysis for class of common
subroutines

* Described raw error vulnerability

* Analyzed various detection/tolerance
techniques

— No clear winner, rules of thumb

y
Step 2: Vulnerabillity analysis of

library-based applications

* Many applications mostly composed of
calls to library routines

~ -
—

Inputs < J _ ‘ — Outputs
_—t J

* If error hits some rbutihe, output will be
corrupted

» Later routines:
corrupted inputs = corrupted outputs

- (Work in progress)

ldea: predict application
vulnerability from routine profiles

 Library implementors provide vulnerability
profile for each routine:
— Error pattern in routine’s output after errors

— Function that maps input error patterns to
output error patterns

Inputs

./L

B'
»
-

- ﬂ Outputs

ldea: predict application
vulnerability from routine profiles

* Given application’s dependence graph
— Simulate effect of error in each routine

— Average over all error locations to produce
error pattern at outputs

~ =
—

-~

=
4
-
»
-’
-

Inputs At

1— Outputs

-
I
L
-
-’

y

Examined applications that use
BLAS and LAPACK

12 routines >0O(n?), double precision real
numbers

Executed on randomly-generated nxn
matrixes

(n=62, 125, 250, 500)

BLAS/LAPACK from Intel’'s Math Kernel

Library on Opteron(MLK10) and
ltanium2(MKLS8)

— Same results on both
Error model: memory bit-flips

Error patterns:
multiplicative error histograms

” DGEMM
- Ws
3 3 e
> S @
- & -
] I N N [N I (N T (N | I [Y I N N Y I (N (N N | |
| [S R P [I 1 T T 1 [

1 T 1T 1T 1 I I
1+2_3 1_2-1 2 22 24 28 216 232...10308 on

Vi

] I | |
~I 307 32 I16 Is 4 92 -1 -3 I-S .l 5 3 A 1 < f
-0 -10307...-232.216.28 .94 .22 9 .1-27 -1-27 -1-2 -1-1+2 -1+2° -1+42 0 1-2 1-\ 1-2

VT

IR M YA A A N B
UL R L L LS
‘aag o e g 12 ad s

l] I A |] |]
o | w1 L1 I
-on=10307----232_216_28_34 _32 2 -1-2

|
-3 -2 4 ! ! I I | '_ [|
1427142 1427 2 222428 216 232...10308 0

y

Output error patterns fall into few
major categories

Output vsr - 62x62

1.E400 - .
4
1.E02 o 5 1
1.E04 * K
1.E06 h N
M .
16808 | [| I ! | | ! !
-1 0 1 2 -2 1 0 1 2
DGGES DGESV
Output beta - 62x1 Output L - 62x62
1.E400 . ¢
1.E02 .
1604 - N Sonsrmncnasa?s o
‘ $ S
1.E06 » e P .
1608 | | | l ! | | | |
- 1 0 1 2 -2 1 0 1 2
DGGES DGEMM

Output C - 62x62

y

DGGSVD
Output beta

DGGSVD
Output V

Error patterns may vary with

matrix size

* * *
1E01 1
$ b 3 x
1503 Vwe%‘
1E05 * ¢ ¢
L ‘ ‘ ‘
1607 ' | |]] | | [
=2 i 1 Fi 2 -1 0 2 2 -1 i 1 ? 0
*
*
1E01 " . . P
4 3
¢
1503 - & l ¢ ¢
* (2
*
1E05 | h
[4 ¢ * ¢ .
¢
1607 | [*o | | | ¢ | | [
-2 0 1 2 T 1 0 2 T 1 0 1 2 0

Input-Output error transition
functions

* Input-Output error transition functions:
trained predictors

— Linear Least Squares

— Support Vector Machines
(linear, 2"d degree polynomial, rbf kernels)

— Artificial Neural Nets

(3,10,100 layers,; linear, gaussian, gaussian
symmetric and sigmoid transfer functions)

Evaluated accuracy of all predictors
on all training sets

 Error metric:

— probability of error >0
- 0e{1e-14, 1e-13, ..., 2, 10, 100)

1

0.1

[]

001 #'T-!_
0001 &
0.0001

I

1E05
106
1E07 7

1E08

1E09

110

@ Recorded
O Predicted |

\

N
Evaluated accuracy of all predictors

on all training sets

100% -
1 3 90% -
0.1 80%
0.01 - 0% -
0.001 - T i .
t T 60% 7
0.0001 - y W ' 50% -
1E05 PS ’ 5 40% -
1E06 - 30% |
1607 Ho O 20%
1608 . 0%
1E09 L 4 I%oo.rded I 0%
1E10 O Predided | Recorded Predicted Error
o 100%
0.1 . = 90%
o/ |
0.01 80 °A>
0.001 ﬂuw O 0 oo A 70% 7
; - 60%
0.0001 - 50%
1E05 40%
1E06 - 30% -
107 O O 20% -
1E08 - 10% -
el © Reoorded oo, EHEE . DMy e
1E10 O Predicted Recorded Predicted Error

4

y
Linear Least Squares has

best accuracy, Neural nets worst

0.8
m1.1E-14

07 -+ H2.1E-14
u4.3E-14

06 - H3.5E-14
®1.71E-13

0.5 m341E-13
BG682E-13

as% B 2.18E-11
©6.98E-10
B 2.24E-08

=T i I | Il B 0.000000715
= 0.0000229

02 - - » 0.000732422
0 0.0234375

o1 + = e — = 0.7%
u2

. it f i | . m10
Neural Nets Least Squares SWM - linear SWM - poly SYM - rbf

r
Accuracy varies among predictors

ANN Original SVM - linear
1.E400 LEWO 1400 .
1LEDL 1E0L + . = 1E-01 . :
& F &l *
1E02 LED? =g Iw- 16402 P
r M - b Y - * " h‘ *
1E03 1E03 -l‘ . a b d 1E-03 :
- -
-
1E04 1604+ z LE04 0
L] -
105 1ED5 = = 1E-05
L3 _J
1 E06 + - 1808 -+ 1 ED6 1:'_x !._ ._....H.
1ED7 1.E07 1E07
LinsSq SVM - rbf SVM - polynomial
1.E+00 LEGDD o 1E40D
1E01 - 1E01 1601 -
E07 - B2 E-02 ¥ ’
1o R | 150 B Aty | .-
1 - . - * - - .' gy WP
LED3 o 3 i = 1E03 LE-03 -
. |
LEO4 e = . 1E04 1604 T s ¥
1E08 1E05 1ED5 .
1EDE + - 1EOE LEO6 foo S —
1ED7 1EQ7 4 1807 22 -

DGEES, output wr

Evaluated predictors on randomly-
generated applications

* Application has constant number of levels
« Constant number of operations per level
» Operations use as input data from prior

level(s)

Inputs

I

— Qutputs

I

y

Neural Nets: Poor accuracy for

appllcatlon vulnerability prediction

m1.E-14
- Function=sigmoid, 3 hidden layers m2E14
40% ®4.E-14
350, m9.E14
30% | m2.E13
\ ®3.E13
25% = 7E-13
20% - m2.E-11
15% B 7.E-10
o ®2.(08
m7.E-07
2% u2.E05
0% -+ = 7.E-04
C D E F H m 2. ED2
" 8.E01
1 In} ¢ Recorded |-
01 . O Predicted |
001 -
0001 -
0.0001 -
1605
1606
1607 O
1608
1609
1E10

ﬂ

Linear Least Squares:
Good accuracy, restricted

45%
40%
35% -
30% -
25%
20% -
15%
10% -

5%
0%

@ Reoorded
O Predicted

m1.E-14
m!?.E-14
m4.E-14
H 9 E-14
W 2.E-13
m2E-13
m 7. E-13
m2.E-11
m 7.E-10
|} E-08
m 7.E-O7F
|2 E-05
= 7.E-Da
m 2. E-02
HEE-O1

SVMs:

Good accuracy, general

45% -
40%
35% -
30% -
25%
20% -
15%
10% -

5%
0%

Function=rbf, gamma=1.0

L |
.

(L]
il

b
e [T}

¢ Reoorded
O Predicted

H1.E-14
W 2.E-14
m4.E-14
= 9.E-14
W 2.E-13
m3E-13
= 7E-13
W 2.E-11
m 7.E-10
=2 E-08
B 7.E-OF
B 2.E-05
= 7E-D4
m 2. E-02
HE.E-O1

Work Is still in progress

Correlating accuracy of input/output
predictors to accuracy of application
prediction

More detailed fault injection
Applications with loops

Real applications

Step 3: Compiler analyses

* No need to focus on external libraries

« Can use compiler analysis to

— Do fault injection/propagation on per-function
basis

— Propagate error profiles through more data
structures (matrix, scalar, tree, etc.)

y
Step 4: Scalable analysis of

parallel applications

« Cannot do fault injection on 1,000-process
application

« Can modularize fault injection
— Inject into individual processes

6960 0969 60 80

ssseses
%ﬁ%ﬁm@

GGG
7

y
Step 4: Scalable analysis of

parallel applications

« Cannot do fault injection on 1,000-process
application

« Can modularize fault injection
— Inject into single-process runs
— Propagate through small-scale runs

AN e

(. | J (. | J - | J - | J
(N\ (N\ (N ()

(& J (& J (&) (&)
(& | J - J - | J
4) ()

(. | J
()

y

Working toward understanding
application vulnerabillity to errors
Soft errors becoming increasing problem
on HPC systems

Must understand how applications react to
soft errors

Traditional approaches inefficient for
realistic applications

Developing tools to cheaply understand
vulnerability of real scientific applications

\

	Accurate Prediction of �Soft Error Vulnerability of Scientific Applications
	Application/System integrated infrastructure can offer good performance, scalability
	Localized rollback recovery scales with system size
	Accurate Prediction of �Soft Error Vulnerability of Scientific Applications
	Soft error: one-time corruption of system state
	Soft errors are a critical reliability challenge for supercomputers
	We must understand the impact of soft errors on applications
	Prior work says very little about most applications
	Extending vulnerability characterization to more applications
	Step 1: Analyzing fault vulnerability of iterative methods
	Possible run outcomes
	Errors cause SDCs, Hangs, Aborts in ~8-10%, each
	Large scale applications vulnerable to silent data corruptions
	Larger scale applications even more vulnerable to silent data corruptions
	Error Detectors
	Convergence detectors reduce SDC at <20% overhead
	Convergence detectors reduce SDC at <20% overhead
	Native detectors have little effect at little cost
	Encoding-based detectors significantly reduce SDC at high cost
	Encoding-based detectors significantly reduce SDC at high cost
	First general analysis of error vulnerability of algorithm class
	Step 2: Vulnerability analysis of library-based applications
	Idea: predict application vulnerability from routine profiles
	Idea: predict application vulnerability from routine profiles
	Examined applications that use BLAS and LAPACK
	Error patterns: �multiplicative error histograms
	Output error patterns fall into few major categories
	Error patterns may vary with �matrix size
	Input-Output error transition functions
	Evaluated accuracy of all predictors on all training sets
	Evaluated accuracy of all predictors on all training sets
	Linear Least Squares has �best accuracy, Neural nets worst
	Accuracy varies among predictors
	Evaluated predictors on randomly-generated applications
	Neural Nets: Poor accuracy for application vulnerability prediction
	Linear Least Squares: �Good accuracy, restricted
	SVMs: �Good accuracy, general
	Work is still in progress
	Step 3: Compiler analyses
	Step 4: Scalable analysis of �parallel applications
	Step 4: Scalable analysis of �parallel applications
	Working toward understanding application vulnerability to errors

