
Accurate Prediction of 
Soft Error Vulnerability of 

Scientific Applications

Greg Bronevetsky
Post-doctoral Fellow

 Lawrence Livermore National Lab



Application/System integrated infrastructure 
can offer good performance, scalability

Application

Checkpoint
 Description API

BLCR

Checkpoint Optimization

Coordination Protocol

Scalable Storage

Smaller

 Checkpoints

Parallel file system

 Node-local storage

Global, Local,

 Hybrid



Localized rollback recovery scales 
with system size

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
1E

+0
5

3E
+0

5
5E

+0
5

1E
+0

6

Number of Processors

Nu
m

be
r o

f R
es

ta
rt

s p
er

 H
ou

r p
er

 
Pr

oc
es

so
r

Global

Hybrid-100

Hybrid-1000

Local

10 MTTF per processor

More localized →
 fewer checkpoints, 

restarts

Don’t need 
consistent 
snapshots



Accurate Prediction of 
Soft Error Vulnerability of 

Scientific Applications

Greg Bronevetsky
Post-doctoral Fellow

 Lawrence Livermore National Lab



Soft error: one-time corruption of 
system state

•
 

Examples: Memory bit-flips, erroneous 
computations

•
 

Caused by 
–

 
Chip variability

–
 

Charged particles passing through transistors
•

 
Decay of packaging materials (Lead208, Boron10)

•
 

Fission due to cosmic neutrons
–

 
Temperature, power fluctuations



Soft errors are a critical reliability 
challenge for supercomputers

•
 

Real Machines:
–

 
ASCI Q: 26 radiation-induced errors/week

–
 

Similar-size Cray XD1: 109 errors/week 
(estimated)

–
 

BlueGene/L: 3-4 L1 cache bit flips/day
•

 
Problem grows worse with time
–

 
Larger machines ⇒ larger error probability

–
 

SRAMs
 

growing exponentially more 
vulnerable per chip



We must understand the impact of soft 
errors on applications

•
 

Soft errors corrupt application state
•

 
May lead to crashes or

•
 

Need to detect/tolerate soft errors
–

 
State of the art: checkers/correctors for 
individual algorithms

–
 

No general solution
•

 
Must first understand how errors affect 
applications
–

 
Identify problem

–
 

Focus efforts

corrupt output



Prior work says very little about most 
applications

•
 

Prior fault analysis work focuses on 
injecting errors into individual applications
–

 
[Lu and Reed, SC04]: Linux + MPICH + 
Cactus, NAMD, CAM

–
 

[Messer et al, ICSDN00]: Linux + Apache and 
Linux + Java (Jess, DB, Javac, Jack)

–
 

[Some et al, AC02]: Lynx + Mars texture 
segmentation application
…

•
 

Where’s my application?



Extending vulnerability 
characterization to more applications
•

 
Goal: general purpose vulnerability 
characterization
–

 
Same accuracy as per-application fault 
injection

–
 

Much cheaper
•

 
Initial steps
–

 
Fault injection iterative linear algebra methods

–
 

Library-based fault vulnerability analysis
 …



Step 1: Analyzing fault vulnerability 
of iterative methods

•
 

Target domain: 
solvers for sparse linear problem Ax=b

•
 

Goal:
 understand error vulnerability of class

 
of 

algorithms
–

 
Raw error rates

–
 

Effectiveness of potential solutions
•

 
Error model: memory bit-flips



Possible run outcomes

•
 

Success: <10% error

•
 

Silent Data Corruption (SDC): ≥10% error

•
 

Hang: method doesn’t reach target 
tolerance

•
 

Abort: SegFault
 

or failed SparseLib
 

check



Errors cause SDCs, Hangs, Aborts 
in ~8-10%, each



Large scale applications vulnerable 
to silent data corruptions

•
 

Scaled to 1-day, 1,000-processor run of 
application that only calls iterative method

10FIT/MB DRAM (1,000-5,000 Raw FIT/MB, 90%-98% effective error correction)



Larger scale applications even more 
vulnerable to silent data corruptions

•
 

Scaled to 10-day, 100,000-processor run of 
application that only calls iterative method

10FIT/MB DRAM (1,000-5,000 Raw FIT/MB, 90%-98% effective error correction)



Error Detectors

Base



Convergence detectors reduce 
SDC at <20% overhead

Base



Convergence detectors reduce 
SDC at <20% overhead

Base



Native detectors have little effect at 
little cost

Base



Encoding-based detectors significantly 
reduce SDC at high cost

Base



Encoding-based detectors significantly 
reduce SDC at high cost

Base



First general analysis of error 
vulnerability of algorithm class

•
 

Vulnerability analysis for class of common 
subroutines

•
 

Described raw error vulnerability

•
 

Analyzed various detection/tolerance 
techniques
–

 
No clear winner, rules of thumb



Step 2: Vulnerability analysis of 
library-based applications

•
 

Many applications mostly composed of 
calls to library routines

•
 

If error hits some routine, output will be 
corrupted

•
 

Later routines: 
corrupted inputs ⇒ corrupted outputs

Inputs Outputs

(Work in progress)



Idea: predict application 
vulnerability from routine profiles

•
 

Library implementors
 

provide vulnerability 
profile for each routine:
–

 
Error pattern in routine’s output after errors

–
 

Function that maps input error patterns to 
output error patterns

Inputs Outputs



Idea: predict application 
vulnerability from routine profiles

•
 

Given application’s dependence graph
–

 
Simulate effect of error in each routine

–
 

Average over all error locations to produce 
error pattern at outputs

Inputs Outputs



Examined applications that use 
BLAS and LAPACK

•
 

12 routines ≥O(n2), double precision real 
numbers

•
 

Executed on randomly-generated nxn
 matrixes

(n=62, 125, 250, 500)
•

 
BLAS/LAPACK from Intel’s Math Kernel 
Library on Opteron(MLK10) and 
Itanium2(MKL8)
–

 
Same results on both

•
 

Error model: memory bit-flips



Error patterns: 
multiplicative error histograms

DGEMM



Output error patterns fall into few 
major categories

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

DGGES

 
Output beta -

 

62x1
DGESV

 
Output L -

 

62x62

DGGES

 
Output vsr

 

-

 

62x62
DGEMM

Output C -

 

62x62



Error patterns may vary with 
matrix size

1.E-07

1.E-05

1.E-03

1.E-01

1.E-07

1.E-05

1.E-03

1.E-01

DGGSVD
Output beta

DGGSVD
Output V

62 125 250 500



Input-Output error transition 
functions

•
 

Input-Output error transition functions: 
trained predictors
–

 
Linear Least Squares

–
 

Support Vector Machines
(linear, 2nd

 

degree polynomial, rbf
 

kernels)
–

 
Artificial Neural Nets

(3,10,100 layers,; linear, gaussian, gaussian
 symmetric and sigmoid transfer functions)



Evaluated accuracy of all predictors 
on all training sets

•
 

Error metric: 
–

 
probability of error ≥δ

–
 

δ∈{1e-14, 1e-13, …, 2, 10, 100)

1E-10
1E-09
1E-08
1E-07
1E-06
1E-05

0.0001
0.001
0.01
0.1

1

Recorded
Predicted



Evaluated accuracy of all predictors 
on all training sets

1E-10
1E-09
1E-08
1E-07
1E-06
1E-05

0.0001
0.001
0.01
0.1

1

Recorded
Predicted

1E-10
1E-09
1E-08
1E-07
1E-06
1E-05

0.0001
0.001
0.01
0.1

1

Recorded
Predicted

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Recorded Predicted Error

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Recorded Predicted Error



Linear Least Squares has 
best accuracy, Neural nets worst



Accuracy varies among predictors

DGEES, output wr



Evaluated predictors on randomly-
 generated applications

•
 

Application has constant number of levels
•

 
Constant number of operations per level

•
 

Operations use as input data from prior 
level(s)

Inputs Outputs



Neural Nets: Poor accuracy for 
application vulnerability prediction

1E-10
1E-09
1E-08
1E-07
1E-06
1E-05

0.0001
0.001
0.01
0.1

1 Recorded

Predicted

Function=sigmoid, 3 hidden layers



1E-10
1E-09
1E-08
1E-07
1E-06
1E-05

0.0001
0.001
0.01
0.1

1 Recorded
Predicted

Linear Least Squares: 
Good accuracy, restricted



1E-10
1E-09
1E-08
1E-07
1E-06
1E-05

0.0001
0.001
0.01
0.1

1

Recorded
Predicted

SVMs: 
Good accuracy, general

Function=rbf, gamma=1.0



Work is still in progress

•
 

Correlating accuracy of input/output 
predictors to accuracy of application 
prediction

•
 

More detailed fault injection

•
 

Applications with loops

•
 

Real applications



Step 3: Compiler analyses

•
 

No need to focus on external libraries

•
 

Can use compiler analysis to 
–

 
Do fault injection/propagation on per-function 
basis

–
 

Propagate error profiles through more data 
structures (matrix, scalar, tree, etc.)



Step 4: Scalable analysis of 
parallel applications

•
 

Cannot do fault injection on 1,000-process 
application

•
 

Can modularize fault injection
–

 
Inject into individual processes



Step 4: Scalable analysis of 
parallel applications

•
 

Cannot do fault injection on 1,000-process 
application

•
 

Can modularize fault injection
–

 
Inject into single-process runs

–
 

Propagate through small-scale runs



Working toward understanding 
application vulnerability to errors

•
 

Soft errors becoming increasing problem 
on HPC systems

•
 

Must understand how applications react to 
soft errors

•
 

Traditional approaches inefficient for 
realistic applications

•
 

Developing tools to cheaply understand 
vulnerability of real scientific applications


	Accurate Prediction of �Soft Error Vulnerability of Scientific Applications
	Application/System integrated infrastructure can offer good performance, scalability
	Localized rollback recovery scales with system size
	Accurate Prediction of �Soft Error Vulnerability of Scientific Applications
	Soft error: one-time corruption of system state
	Soft errors are a critical reliability challenge for supercomputers
	We must understand the impact of soft errors on applications
	Prior work says very little about most applications
	Extending vulnerability characterization to more applications
	Step 1: Analyzing fault vulnerability of iterative methods
	Possible run outcomes
	Errors cause SDCs, Hangs, Aborts in ~8-10%, each
	Large scale applications vulnerable to silent data corruptions
	Larger scale applications even more vulnerable to silent data corruptions
	Error Detectors
	Convergence detectors reduce SDC at <20% overhead
	Convergence detectors reduce SDC at <20% overhead
	Native detectors have little effect at little cost
	Encoding-based detectors significantly reduce SDC at high cost
	Encoding-based detectors significantly reduce SDC at high cost
	First general analysis of error vulnerability of algorithm class
	Step 2: Vulnerability analysis of library-based applications
	Idea: predict application vulnerability from routine profiles
	Idea: predict application vulnerability from routine profiles
	Examined applications that use BLAS and LAPACK
	Error patterns: �multiplicative error histograms
	Output error patterns fall into few major categories
	Error patterns may vary with �matrix size
	Input-Output error transition functions
	Evaluated accuracy of all predictors on all training sets
	Evaluated accuracy of all predictors on all training sets
	Linear Least Squares has �best accuracy, Neural nets worst
	Accuracy varies among predictors
	Evaluated predictors on randomly-generated applications
	Neural Nets: Poor accuracy for application vulnerability prediction
	Linear Least Squares: �Good accuracy, restricted
	SVMs: �Good accuracy, general
	Work is still in progress
	Step 3: Compiler analyses
	Step 4: Scalable analysis of �parallel applications
	Step 4: Scalable analysis of �parallel applications
	Working toward understanding application vulnerability to errors

