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Application/System integrated infrastructure
can offer good performance, scalability
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Localized rollback recovery scales

with system size
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Soft error: one-time corruption of

system state

« Examples: Memory bit-flips, erroneous
computations

« Caused by
— Chip variability
— Charged particles passing through transistors

« Decay of packaging materials (Lead?%¢, Boron9)
* Fission due to cosmic neutrons

— Temperature, power fluctuations
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Soft errors are a critical reliability

challenge for supercomputers

 Real Machines:
— ASCI Q: 26 radiation-induced errors/week

— Similar-size Cray XD1: 109 errors/week
(estimated)

— BlueGene/L: 3-4 L1 cache bit flips/day
* Problem grows worse with time

— Larger machines = larger error probability

— SRAMs growing exponentially more
vulnerable per chip
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We must understand the impact of soft

errors on applications

» Soft errors corrupt application state
 May lead to crashes or corrupt output

 Need to detect/tolerate soft errors

— State of the art: checkers/correctors for
individual algorithms

— No general solution
* Must first understand how errors affect
applications
— ldentify problem
— Focus efforts
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Prior work says very little about most

applications

 Prior fault analysis work focuses on
injecting errors into individual applications

— [Lu and Reed, SCO04]: Linux + MPICH +
Cactus, NAMD, CAM

— [Messer et al, ICSDNOO]: Linux + Apache and
_inux + Java (Jess, DB, Javac, Jack)

— [Some et al, AC02]: Lynx + Mars texture
segmentation application

* Where’s my application?

\
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Extending vulnerability

characterization to more applications

« Goal: general purpose vulnerability
characterization

— Same accuracy as per-application fault
Injection
— Much cheaper
* |nitial steps
— Fault injection iterative linear algebra methods
— Library-based fault vulnerability analysis
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Step 1: Analyzing fault vulnerability

of iterative methods

* Target domain:
solvers for sparse linear problem Ax=Db

e Goal:

understand error vulnerability of class of
algorithms

— Raw error rates
— Effectiveness of potential solutions

* Error model: memory bit-flips




Possible run outcomes

Success: <10% error
Silent Data Corruption (SDC): 210% error

Hang: method doesn't reach target
tolerance

Abort: SegFault or failed SparseLib check
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Errors cause SDCs, Hangs, Aborts

in ~8-10%, each
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Large scale applications vulnerable

to silent data corruptions

* Scaled to 1-day, 1,000-processor run of
application that only calls iterative method

0.12%

mSDC..

0.10%
=
£ 0.08%
0
8
o 0.06%
o
2 0.04%
(7))

0.00%

BiCG BICGSTA Cheby PR

10FIT/MB DRAM (1,000-5,000 Raw FIT/MB, 90%-98% effective error correction)



y N
Larger scale applications even more

vulnerable to silent data corruptions

« Scaled to 10-day, 100,000-processor run of
application that only calls iterative method
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Error Detectors
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Convergence detectors reduce
SDC at <20% overhead

0.06% True Overhead vs SDC —
Error Detection
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Convergence detectors reduce

SDC at <20% overhead
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Native detectors have little effect at

little cost
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y

Encoding-based detectors significantly
reduce SDC at high cost

True Overhead vs SDC
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y

Encoding-based detectors significantly
reduce SDC at high cost
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a4 . .
First general analysis of error

vulnerability of algorithm class

* Vulnerability analysis for class of common
subroutines

* Described raw error vulnerability

* Analyzed various detection/tolerance
techniques

— No clear winner, rules of thumb
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Step 2: Vulnerabillity analysis of

library-based applications

* Many applications mostly composed of
calls to library routines

~ -
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Inputs < J _ ‘ — Outputs
_—t J

* If error hits some rbutihe, output will be
corrupted

» Later routines:
corrupted inputs = corrupted outputs

- (Work in progress)



ldea: predict application
vulnerability from routine profiles

 Library implementors provide vulnerability
profile for each routine:
— Error pattern in routine’s output after errors

— Function that maps input error patterns to
output error patterns
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ldea: predict application
vulnerability from routine profiles

* Given application’s dependence graph
— Simulate effect of error in each routine

— Average over all error locations to produce
error pattern at outputs
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Examined applications that use
BLAS and LAPACK

12 routines >0O(n?), double precision real
numbers

Executed on randomly-generated nxn
matrixes

(n=62, 125, 250, 500)

BLAS/LAPACK from Intel’'s Math Kernel

Library on Opteron(MLK10) and
ltanium2(MKLS8)

— Same results on both
Error model: memory bit-flips



Error patterns:
multiplicative error histograms
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Output error patterns fall into few
major categories

Output vsr - 62x62
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DGGSVD
Output beta

DGGSVD
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Error patterns may vary with

matrix size
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Input-Output error transition
functions

* Input-Output error transition functions:
trained predictors

— Linear Least Squares

— Support Vector Machines
(linear, 2"d degree polynomial, rbf kernels)

— Artificial Neural Nets

(3,10,100 layers,; linear, gaussian, gaussian
symmetric and sigmoid transfer functions)



Evaluated accuracy of all predictors
on all training sets

 Error metric:

— probability of error >0
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Evaluated accuracy of all predictors

on all training sets
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Linear Least Squares has

best accuracy, Neural nets worst
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Accuracy varies among predictors
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Evaluated predictors on randomly-
generated applications

* Application has constant number of levels
« Constant number of operations per level
» Operations use as input data from prior

level(s)

Inputs
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— Qutputs
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Neural Nets: Poor accuracy for

appllcatlon vulnerability prediction

m1.E-14
- Function=sigmoid, 3 hidden layers m2E14
40% ®4.E-14
350, m9.E14
30% | m2.E13
\ ®3.E13
25% = 7E-13
20% - m2.E-11
15% B 7.E-10
o ®2.(08
m7.E-07
2% u2.E05
0% -+ = 7.E-04
C D E F H m 2. ED2
" 8.E01
1 In} ¢ Recorded |-
01 . O Predicted |
001 -
0001 -
0.0001 -
1605
1606
1607 O
1608
1609
1E10

ﬂ



Linear Least Squares:
Good accuracy, restricted
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SVMs:

Good accuracy, general
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Work Is still in progress

Correlating accuracy of input/output
predictors to accuracy of application
prediction

More detailed fault injection
Applications with loops

Real applications



Step 3: Compiler analyses

* No need to focus on external libraries

« Can use compiler analysis to

— Do fault injection/propagation on per-function
basis

— Propagate error profiles through more data
structures (matrix, scalar, tree, etc.)
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Step 4: Scalable analysis of

parallel applications

« Cannot do fault injection on 1,000-process
application

« Can modularize fault injection
— Inject into individual processes
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y
Step 4: Scalable analysis of

parallel applications

« Cannot do fault injection on 1,000-process
application

« Can modularize fault injection
— Inject into single-process runs
— Propagate through small-scale runs
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Working toward understanding
application vulnerabillity to errors
Soft errors becoming increasing problem
on HPC systems

Must understand how applications react to
soft errors

Traditional approaches inefficient for
realistic applications

Developing tools to cheaply understand
vulnerability of real scientific applications

\
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