
Oak Ridge National Laboratory
U. S. Department of Energy

Chaotic-Map Method for Detection and Diagnosis
of CPU-GPU Hybrid Computing Systems

Nagi Rao

Oak Ridge National Laboratory

Discussion Presentation

August 25, 2014

Research Sponsored by

ASCR Applied Mathematics Program, U.S. Department of Energy

Outline

1.  Background
2.  Chaotic map method
3.  Diagnosis of hybrid systems
4.  Codes and experimental results

Chaotic Poincare maps

Poincare Map:

Trajectory

Examples:
 logistic map:

 tent map:

 Hennon map

Simple computations generate seemingly complex trajectories

a=4

Chaotic maps amplify state errors
and spread across bit-space

Chaotic trajectory: is chaotic if
(i)  it is not asymptotically periodic, and
(ii)  Lyapunov exponent is positive

Key Properties:
(i)  Extreme sensitivity: small differences in states rapidly diverge
(ii)  Wide Fourier spectrum: few iterates cover bit-space

differences between two trajectories

 one of the states corrupted at t=50

19

23

Poincare maps for fault detection
Poincare maps computed in parallel at different computing units: fault
at one will lead to quick divergence of the outputs, depending on:

• Type of faults: Wide range of faults in
• arithmetic and logical operations
• registers and memory

but are limited to those in operations used by M(.)

• Poincare map properties: Computation of M(.)
• sensitive to errors

- in constituent operations, and
- mechanisms used in storing and updating the states

• rate of divergence and its detectability depends on the
Lyapunov exponent

-  generally, larger Lyapunov exponent values lead to
quicker divergence
-  for tent map, except at X=1/2

Side Note: Codes with known outputs are routinely used for diagnosis of
computing systems – Poincare maps are among the least complex

Chaotic-Identity Map
Poincare map amplifies errors in operations used in its own computation

Chaotic-Identity Map:

Execution routed through
• computing operations
• memory locations
• interconnect links

to capture errors in them

Output is identical to
if there are no faults

It catches errors in specified
operations – instructions, sub-
routines, libraries

Chaotic-Computing Map: Identity computations replaced by other operations

Summary: Proof-of-Principle Detection Codes

Initial codes developed and tested on these systems
i.  Single-Host System Diagnosis

•  Multiple Cores: pthreads - delivered to OLCF
•  4-core Intel Xeon 2.67GHz; 16-core 16-core AMD Opteron; 32-core Intel

Xeon 2.7GHz; 48-core AMD Opteron 2.29GHz
•  GPU Accelerators: CUDA C - delivered to OLCF

•  Single-GPU: Quadro 600, Tesla T10, Tesla C1060, Tesla K20X
•  Multiple-GPU: 8 Tesla T10

ii.  Multi-Host Hybrid Systems Diagnosis
•  Multi-host, mutli-cores system: MPI+pthreads
•  Multi-host, single GPU system: MPI+ CUDA C
•  Multi-host, multi-core, single GPU: MPI+pthreads+ CUDA C

Systems Used in Tests:
Lens:

 77-node linux cluster: 16-core/node 2.3 GHz AMD Opteron; 32 nodes with
NVIDIA Tesla C1060

Titan:
 OLCF supercomputer: 18,688 nodes: 16-core/node AMD Opteron 22.2GHz;
unconventional NVIDIA Kepler Tesla K20X

Chester:
 “test” version of Titan: 95 nodes

Hybrid Computing System
Architecture

interconnect

node 1

node 2

node N

GPU CPUs GPU

core core

core core

(1,1) (1,2) (1,B)

(2,1) (2,2) (2,B)

(i,j)

(T,1) (T,2) (T,B)

socket
socket

(block,thread)

Titan: Cray XK7

Overall Detection Approach

Implementations: system
specific

• Multi-core systems:
ptherads
• GPUs: CUDA C block-
threads
• Multi-node CPU+GPU
systems:

•  threads+CUDA+MPI

launch

compare

follow-on
al

l n
od

es

reliable
nodes

reliable
nodes

Chaotic-Map Method:
• Compute chaotic maps in
parallel on “all” nodes and paths

• Compute follow-on maps on
“reliable” nodes

• Detection: “errors”
amplified by chaotic
maps:

•  in-situ
•  follow-on

 computations

• Diagnosis: may
require additional
codes

Implementation: Single Nodes

launch

compare

follow-on

CP
U

co

re
s

main core

main core

Multi-Core Node:
• pthreads: chaotic map trajectory
on every core

GPU Accelerator:
• CUDA C kernel: chaotic map
threads on every block

launch

compare

follow-on

G
PU

 b
lo

ck
s

CPU

CPU

Implementation: Hybrid Systems

launch

compare

follow-on

CP
U

co

re
s

m
ai

n
co

re

main core

Multi-Core :
Pthreads:

GPU :
CUDA
kernel G

PU
 b

lo
ck

s

hybrid
compute

node

MPI
launch

MPI
gather

CPU Multi-Core Results Summary
All CPU chaotic-map output results match:

–  Match to the bit on AMD Opteron and Intel cores
–  Floating point operations are IEEE 754 compliant

l
chester

titan

lens

16-core/node
2.3 GHz AMD Opteron 16-core/node

AMD Opteron 22.2GHz

16-core/node
AMD Opteron 22.2GHz

GPU Computations:
Different GPU blocks of same GPU producing different answers in some cases:

•  Observed when integer and fractional variables are mixed on GPU blocks
•  Observed on multiple GPUs, and repeatable
•  Implications are not entirely understood – potentially destabilize certain

non-linear computations
Example run: titan
I have no name!@nid06983:/tmp/work/nrao> ./diag_gpu_titan
Device Name: Tesla K20X
[deviceProp.major.deviceProp.minor] = [3.5]
multi-processor count = 14
warp_size = 32
cudaGetDevice()=0

 CPU: Number of cores detected=16

 GPU: Number of threads=100; Number of blocks=50
 chaotic map: x=0.200000; l=4.000000; n=10000

GPU: Chaotic Map
block_x[0]= 0.682320 <-> 3F2EAC8E
block_x[1]= 1.682320 <-> 3F2EAC8E
block_x[2]= 2.682321 <-> 3F2EAC90
block_x[3]= 3.682321 <-> 3F2EAC90

block_x[13]=13.682321 <-> 3F2EAC90
block_x[14]=14.682321 <-> 3F2EAC90
block_x[15]=15.682321 <-> 3F2EAC90
block_x[16]=16.682320 <-> 3F2EAC80
block_x[17]=17.682320 <-> 3F2EAC80

Output: fractional part is Chaotic-map state
- not identical across the blocks of same GPU

- may “appear” same under C printf but different

Tesla K20X

GPU Computations: follow-on chaotic map trajectory
Example run: titan

I have no name!@nid06983:/tmp/work/nrao> ./diag_gpu_titan

GPU: Chaotic Map
block_x[0]=0.682320 <-> 3F2EAC8E
block_x[1]=1.682320 <-> 3F2EAC8E
block_x[2]=2.682321 <-> 3F2EAC90
block_x[3]=3.682321 <-> 3F2EAC90
block_x[4]=4.682321 <-> 3F2EAC90
block_x[5]=5.682321 <-> 3F2EAC90
block_x[6]=6.682321 <-> 3F2EAC90
block_x[7]=7.682321 <-> 3F2EAC90
block_x[8]=8.682321 <-> 3F2EAC90
block_x[9]=9.682321 <-> 3F2EAC90
block_x[10]=10.682321 <-> 3F2EAC90
block_x[11]=11.682321 <-> 3F2EAC90
block_x[12]=12.682321 <-> 3F2EAC90
block_x[13]=13.682321 <-> 3F2EAC90
block_x[14]=14.682321 <-> 3F2EAC90
block_x[15]=15.682321 <-> 3F2EAC90
block_x[16]=16.682320 <-> 3F2EAC80
block_x[17]=17.682320 <-> 3F2EAC80
block_x[18]=18.682320 <-> 3F2EAC80
block_x[19]=19.682320 <-> 3F2EAC80
block_x[20]=20.682320 <-> 3F2EAC80
block_x[21]=21.682320 <-> 3F2EAC80
block_x[22]=22.682320 <-> 3F2EAC80

CPU:
n_iter:10000: x_0:0.200000 l:4.000000, x_n:0.682320
 logistic_map:0.682320 <-> 0.860477
 linear_map 0.682320 <-> 0.000016
 x_n=3F2EAC8E

Follow-on linear Map
block_x[0]=0.682320 <-> 0.000016
block_x[1]=1.682320 <-> 0.000016
block_x[2]=2.682321 <-> 0.000016
block_x[3]=3.682321 <-> 0.000016
block_x[4]=4.682321 <-> 0.000016
block_x[5]=5.682321 <-> 0.000016
block_x[6]=6.682321 <-> 0.000016
block_x[7]=7.682321 <-> 0.000016
block_x[8]=8.682321 <-> 0.000016
block_x[9]=9.682321 <-> 0.000016
block_x[10]=10.682321 <-> 0.000016
block_x[11]=11.682321 <-> 0.000016
block_x[12]=12.682321 <-> 0.000016
block_x[13]=13.682321 <-> 0.000016
block_x[14]=14.682321 <-> 0.000016
block_x[15]=15.682321 <-> 0.000016
block_x[16]=16.682320 <-> 0.000016
block_x[17]=17.682320 <-> 0.000016
block_x[18]=18.682320 <-> 0.000016
block_x[19]=19.682320 <-> 0.000016
block_x[20]=20.682320 <-> 0.000016
block_x[21]=21.682320 <-> 0.000016
block_x[22]=22.682320 <-> 0.000016

Follow-on chaotic maps
diverge significantly

Follow-on Chaotic Map
block_x[0]=0.682320 <-> 0.860477
block_x[1]=1.682320 <-> 0.860477
block_x[2]=2.682321 <-> 0.000000
block_x[3]=3.682321 <-> 0.000000
block_x[4]=4.682321 <-> 0.000000
block_x[5]=5.682321 <-> 0.000000
block_x[6]=6.682321 <-> 0.000000
block_x[7]=7.682321 <-> 0.000000
block_x[8]=8.682321 <-> 0.000000
block_x[9]=9.682321 <-> 0.000000
block_x[10]=10.682321 <-> 0.000000
block_x[11]=11.682321 <-> 0.000000
block_x[12]=12.682321 <-> 0.000000
block_x[13]=13.682321 <-> 0.000000
block_x[14]=14.682321 <-> 0.000000
block_x[15]=15.682321 <-> 0.000000
block_x[16]=16.682320 <-> 0.671719
block_x[17]=17.682320 <-> 0.671719
block_x[18]=18.682320 <-> 0.671719
block_x[19]=19.682320 <-> 0.671719
block_x[20]=20.682320 <-> 0.671719
block_x[21]=21.682320 <-> 0.671719
block_x[22]=22.682320 <-> 0.671719

follow-on linear maps
May “absorb” the differences

Operational “Artifacts” Discovered

Execution of diagnosis codes led to the discovery of “operational artifacts”

GPU-emulations and incorrect executions: code delays
•  Unless explicitly tested for presence of GPUs, codes may be

•  executed in “emulated mode”: long execution times
•  incorrectly executed: incorrect results

•  Resolved by explicitly checking for “physical” GPUs

Data transfers errors when MPI is used to launch CUDA kernels
•  Outputs from certain blocks has zero fractional part:

•  Happens randomly but always the GPU block number matches
the node number

•  Implications are not entirely understood – potentially destabilize
certain non-linear computations

Simulation Results

We simulate three types of errors:
i.  ALU errors corrupt state by a multiplier

•  bit flip to 1 in ALU registers
ii.  memory errors clamp state to a fixed value

•  stuck-at fault in RAM
iii.  cross-connect errors modify state by a multiplier.

•  link transmission error

Nodes transition to a faulty mode with probability p, and
once transitioned

• errors type (i) and (ii) are permanent,
• error type (iii) lasts only for a single time step

Case of no faults:
10-node pipeline of depth k = 10

•  none are detected
•  all chaotic time traces are
identical across nodes

Simulation Results: No Faults

ground truth: no faults

trajectories

detector output:
none
;

Simulation Results

Stuck-at faults:
• full pipeline, spanning all 10
nodes
• trajectories disrupted by faulty
nodes

• detection within one time step

detector output:
two detected

ground truth:
two stuck-at faults

Simulation Results

Pipeline of single chain
• executed by one node at time
• chain “sweeps” across nodes in time

Both faults are detected:
• detection delayed until the chain
reaches faulty node

The total computational cost:
• 1/10 of the case (b)
• detection achieved, albeit delayed by
few time steps detector output:

two detected

ground truth:
two stuck-at faults

Simulation Results

Transient fault in interconnect
payload lasted for one time unit

Full pipeline spanning all nodes will
detect such failure

Pipeline of two chains with
periodicity of 5 nodes is able to
detect

detector output:
two detected

ground truth:
two transient faults

Simulation System

Simulations on 48-core Linux workstation: 2.23GHz AMD Opteron processors

Computation on a single processor core and delay of 10 micro seconds to
simulate the latency of interconnect.

•  N = 500,000 nodes: runtimes under 2 seconds for
 - logistic map and a pair of reciprocal operations (5 operations for CI-map).

First-order approximation: for CI-map
• 10 operations each with 10 micro seconds execution time, and
• interconnect with 10 microsecond latency

pipeline execution time is 11 seconds for N=100,000

All chains of PCC -map are computed in parallel
• execution time scales linearly in N
• under 2 minutes for million computing nodes

2

HP Proliant 48-core Linux workstation: 2.23GHz AMD Opteron processors

2 Four sockets
8 Dyes
48 cores

HP Proliant 48-core Linux workstation:
2.23GHz AMD Opteron processors

2

Diagnosis output

simulated
errors

no errors

System Profiling and Application Tracing
System Diagnosis and Profiling:

• executed at the beginning for an initial system profile
- repeated periodically or triggered by failure events.

• typically, all system resources are devoted for initial profiling

• our method:
- execute diagnosis modules customized to static and silent failures in
processing nodes, memory units and interconnects
- generate robustness estimates from outputs of diagnosis modules.

Application Tracing:
• diagnosis modules are strategically inserted into application codes

- during compilation or preprocessing
•  confidence measures are estimated for their outputs.

Basic idea: execution paths of these tracer codes “follow” along the same
components as the application codes:

• processing nodes, memory elements and interconnect links,

Require “new” detection, profiling and tracing theory and algorithms:
 Failure detection: schedule application around, replace nodes
 Failure likelihood: set application fault tolerance, estimate confidence

Our approach: synthesis of methods from fault diagnosis, chaotic
Poincare maps, and statistical estimation:
a)  Diagnosis methods: identify computation errors due to

component failures, in arithmetic and logic unit (ALU), memory
and cross-connect, by strategically guiding the execution paths:

i.  system diagnosis pipelines
ii.  application traces

b)  Poincare maps amplify effects of component failures making
them quickly detectable,

c)  Statistical estimation methods process data from execution
traces to generate

i.  system robustness profiles
ii.  confidence estimates for applications

 Our Approach

Outputs of CI-maps are used to generate confidence measures for executions,
particularly if no failures are detected

 executed at rate
- once every seconds

Under statistical independence
probability of failure during executions

Confidence:
that node failure probability is less than

If no failures are detected in executions

probability of node failure during sec

Confidence Estimates

Confidence Estimate for Triplicated Application
Application triplicated with majority vote at each step:

•  error-free under single faults
•  makes error if there are two or more faults within “unit” time

Application executed for duration with application tracing detecting faults:
 if two or more faults detected within “unit” time: check-point
 if single are no fault detected in all unit times:
 confidence that application is error-free

 with probability
 under statistically independent component failures

Qualitatively, confidence
•  improves with lower number of faults detected
•  improves with longer tracing period:

•  longer means higher
 Note: zero errors do not imply 100% confidence

General Confidence Estimate:

If failures are detected in fraction of executions

General confidence estimate:

Derivation: By Hoeffding’s Inequality we have

Derivation of Confidence Estimate: Outline
By Hoeffding’s Inequality we have

Confidence Estimate for Replicated Application:
General Case

Application replicated times with majority vote at component level:
•  error-free under faults or fewer faults
•  makes error if there are or more faults within “unit” time

Application executed for duration with application tracing detecting faults
 if two or more faults detected within “unit” time: check-point
 if single are no fault detected in all unit times:
 confidence that application is error-free

 with probability

 under statistical independence of component failures
Qualitatively, confidence

•  improves with lower number of faults detected
•  improves with longer tracing period
•  also, imrpoves with replication level

Conclusions
Our approach
(i)  utilizes light-weight computations based on chaotic and identity maps to

detect certain classes of errors in computations, and
(ii)  implementation for diagnosis of multi-core processors, GPUs, and hybrid

systems
 - tested on three hybrid systems:

•  4 multi-core processors
•  4 GPUs

This approach is suitable for exascale systems:
(a)  low computational requirements
(b)  linear scaling of the execution time

both for system profiling and application tracing

Future Work:
• These results are only a very first step

• Implementations for high-performance machines and clusters
• Incorporation of failure classes and application footprints

• More analysis and simulations needed
- understand and quantify classes of errors detected by a given set of
Poincare and identity maps

References

Conference Papers
•  N. S. V. Rao, Fault detection in multi-core processors using chaotic maps, 3rd

Workshop on Fault-Tolerance for HPC at Extreme Scale (FTXS 2013), 2013.
•  N. S. V. Rao, Resiliency in Exascale systems and computations using chaotic-

identity maps, Workshop on Resiliency in High Performance Computing in
Clusters, Clouds and Grids (Resilience 2012), 2012, extended abstract, invited
talk.

•  N. S. V. Rao, Chaotic-identity maps for robustness estimation of Exascale
computations, 2nd Workshop on Fault-Tolerance for HPC at Extreme Scale
(FTXS 2012), 2012.

Whitepapers
•  N. S. V. Rao, Fault detection and profiling algorithms for exascale computing

Systems, https://collab.mcs.anl.gov/display/examath/Submitted+Papers
•  N. S. V. Rao, Confidence estimation for exascale computations, https://

collab.mcs.anl.gov/display/examath/Submitted+Papers

Publications related to the topic
Fault diagnosis
•  N. S. V. Rao and S. Toida, On polynomial-time testable combinational circuits,

IEEE Transactions on Computers, vol. 43, no. 11, 1994, pp. 1298-1308.
•  N. S. V. Rao, Expected-value analysis of two single fault diagnosis algorithms,

IEEE Transactions on Computers, vol. 42, no. 3, 1993, pp. 272-280.
•  N. S. V. Rao, Computational complexity issues in operative diagnosis of graph-

based systems, IEEE Transactions on Computers, vol. 42, no. 4, 1993, pp.
447-457.

Chaotic Maps
•  N. S. V. Rao, J. Gao, L. O. Chua, On dynamics of transport protocols in wide-

area Internet connections, in Complex Dynamics in Communication Networks,
L. Kocarev and G. Vattay (editors), 2005, pp. 69- 102.

•  J. Gao, N. S. V. Rao, J. Hu, J. Ai, Quasi-periodic route to chaos in the dynamics
of Internet transport protocols, Physical Review Letters, 2005.

Statistical Estimation
•  N. S. V. Rao, Measurement-based statistical fusion methods for distributed

sensor networks, in Distributed Sensor Networks, 2nd Edition, R. R. Brooks and
S. S. Iyengar (editors), 2011, Chapman and Hall Publishers.

Thank you

