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Chaotic Poincare maps 

Poincare Map: 

Trajectory 

Examples: 
      logistic map: 

      tent map: 

       Hennon map 

Simple computations generate seemingly complex trajectories 

a=4 



Chaotic maps amplify state errors 
and spread across bit-space 

Chaotic trajectory:                         is chaotic if 
(i)  it is not asymptotically periodic, and 
(ii)  Lyapunov exponent is positive 

Key Properties:  
(i)  Extreme sensitivity: small differences in states rapidly diverge 
(ii)  Wide Fourier spectrum: few iterates cover bit-space 

differences between two trajectories 

 one of the states corrupted at t=50 

19 
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Poincare maps for fault detection 
Poincare maps computed in parallel at different computing units: fault 
at one will lead to quick divergence of the outputs, depending on: 

• Type of faults: Wide range of faults in  
• arithmetic and logical operations 
• registers and memory 

but are limited to those in operations used by M(.) 

• Poincare map properties: Computation of M(.) 
• sensitive to errors  

- in constituent operations, and  
- mechanisms used in storing and updating the states 

• rate of divergence and its detectability depends on the 
Lyapunov exponent  

-  generally, larger Lyapunov exponent values lead to 
quicker divergence 
-  for tent map,                   except at X=1/2 

Side Note: Codes with known outputs are routinely used for diagnosis of 
computing systems – Poincare maps are among the least complex 



Chaotic-Identity Map 
Poincare map amplifies errors in operations used in its own computation  

Chaotic-Identity Map: 

Execution routed through 
• computing operations 
• memory locations 
• interconnect links  

to capture errors in them 

Output          is identical to            
if there are no faults 

It catches errors in specified 
operations – instructions, sub-
routines, libraries 

Chaotic-Computing Map: Identity computations replaced by other operations  



Summary: Proof-of-Principle Detection Codes 

Initial codes developed and tested on these systems 
i.  Single-Host  System Diagnosis 

•  Multiple Cores:  pthreads - delivered to OLCF 
•  4-core Intel Xeon 2.67GHz; 16-core 16-core AMD Opteron; 32-core Intel 

Xeon 2.7GHz; 48-core AMD Opteron 2.29GHz 
•  GPU Accelerators: CUDA C - delivered to OLCF 

•  Single-GPU: Quadro 600, Tesla T10, Tesla C1060, Tesla K20X 
•  Multiple-GPU: 8 Tesla T10 

ii.  Multi-Host  Hybrid Systems Diagnosis  
•  Multi-host, mutli-cores system: MPI+pthreads 
•  Multi-host, single GPU system: MPI+ CUDA C 
•  Multi-host, multi-core, single GPU: MPI+pthreads+ CUDA C 

Systems Used in Tests: 
Lens: 

 77-node linux cluster: 16-core/node 2.3 GHz AMD Opteron; 32 nodes with 
NVIDIA Tesla C1060 

Titan: 
 OLCF supercomputer: 18,688 nodes: 16-core/node AMD Opteron 22.2GHz; 
unconventional NVIDIA Kepler Tesla K20X 

Chester: 
 “test” version of Titan: 95 nodes 



Hybrid Computing System 
Architecture 

interconnect 
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node 2 

node N 

GPU CPUs GPU 
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Titan: Cray XK7 



Overall Detection Approach 

Implementations: system 
specific 

• Multi-core systems: 
ptherads 
• GPUs: CUDA C block-
threads 
• Multi-node CPU+GPU 
systems: 

•  threads+CUDA+MPI 

launch 
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follow-on 
al

l n
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reliable 
nodes 

reliable 
nodes 

Chaotic-Map Method: 
• Compute chaotic maps in 
parallel on “all” nodes and paths 

• Compute follow-on maps on 
“reliable” nodes 

• Detection: “errors” 
amplified by chaotic 
maps: 

•  in-situ  
•  follow-on  

      computations 

• Diagnosis: may 
require additional 
codes 



Implementation: Single Nodes 
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Multi-Core  Node: 
• pthreads: chaotic map trajectory 
on every core 

GPU  Accelerator: 
• CUDA C kernel: chaotic map 
threads on every block 
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Implementation: Hybrid Systems 
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CPU Multi-Core Results Summary 
All CPU chaotic-map output results match:  

–  Match to the bit on AMD Opteron and Intel cores 
–  Floating point operations are IEEE 754 compliant 

l 
chester 

titan 

lens 

16-core/node  
2.3 GHz AMD Opteron  16-core/node  

AMD Opteron 22.2GHz 

16-core/node  
AMD Opteron 22.2GHz 



GPU Computations: 
Different GPU blocks of same GPU producing different answers in some cases: 

•  Observed when integer and fractional variables are mixed on GPU blocks 
•  Observed on multiple GPUs, and repeatable 
•  Implications are not entirely understood – potentially destabilize certain 

non-linear computations  
Example run: titan 
I have no name!@nid06983:/tmp/work/nrao> ./diag_gpu_titan 
Device Name: Tesla K20X 
[deviceProp.major.deviceProp.minor] = [3.5] 
multi-processor count = 14 
warp_size = 32 
cudaGetDevice()=0 

 CPU:        Number of cores detected=16 

 GPU:        Number of threads=100;        Number of blocks=50 
 chaotic map:        x=0.200000;        l=4.000000;        n=10000 

GPU: Chaotic Map 
block_x[0]=    0.682320  <-> 3F2EAC8E 
block_x[1]=    1.682320  <-> 3F2EAC8E  
block_x[2]=    2.682321  <-> 3F2EAC90  
block_x[3]=    3.682321  <-> 3F2EAC90  

block_x[13]=13.682321  <-> 3F2EAC90  
block_x[14]=14.682321  <-> 3F2EAC90  
block_x[15]=15.682321  <-> 3F2EAC90  
block_x[16]=16.682320  <-> 3F2EAC80  
block_x[17]=17.682320  <-> 3F2EAC80  

Output: fractional part is Chaotic-map state 
- not identical across the blocks of same GPU 

- may “appear” same under C printf but different 

Tesla K20X 



GPU Computations: follow-on chaotic map trajectory 
Example run: titan 

I have no name!@nid06983:/tmp/work/nrao> ./diag_gpu_titan 

GPU: Chaotic Map 
block_x[0]=0.682320  <-> 3F2EAC8E  
block_x[1]=1.682320  <-> 3F2EAC8E  
block_x[2]=2.682321  <-> 3F2EAC90  
block_x[3]=3.682321  <-> 3F2EAC90  
block_x[4]=4.682321  <-> 3F2EAC90  
block_x[5]=5.682321  <-> 3F2EAC90  
block_x[6]=6.682321  <-> 3F2EAC90  
block_x[7]=7.682321  <-> 3F2EAC90  
block_x[8]=8.682321  <-> 3F2EAC90  
block_x[9]=9.682321  <-> 3F2EAC90  
block_x[10]=10.682321  <-> 3F2EAC90  
block_x[11]=11.682321  <-> 3F2EAC90  
block_x[12]=12.682321  <-> 3F2EAC90  
block_x[13]=13.682321  <-> 3F2EAC90  
block_x[14]=14.682321  <-> 3F2EAC90  
block_x[15]=15.682321  <-> 3F2EAC90  
block_x[16]=16.682320  <-> 3F2EAC80  
block_x[17]=17.682320  <-> 3F2EAC80  
block_x[18]=18.682320  <-> 3F2EAC80  
block_x[19]=19.682320  <-> 3F2EAC80  
block_x[20]=20.682320  <-> 3F2EAC80  
block_x[21]=21.682320  <-> 3F2EAC80  
block_x[22]=22.682320  <-> 3F2EAC80 

CPU: 
n_iter:10000: x_0:0.200000 l:4.000000, x_n:0.682320  
       logistic_map:0.682320 <-> 0.860477 
       linear_map   0.682320 <-> 0.000016 
           x_n=3F2EAC8E 

Follow-on linear Map 
block_x[0]=0.682320  <-> 0.000016  
block_x[1]=1.682320  <-> 0.000016  
block_x[2]=2.682321  <-> 0.000016  
block_x[3]=3.682321  <-> 0.000016  
block_x[4]=4.682321  <-> 0.000016  
block_x[5]=5.682321  <-> 0.000016  
block_x[6]=6.682321  <-> 0.000016  
block_x[7]=7.682321  <-> 0.000016  
block_x[8]=8.682321  <-> 0.000016  
block_x[9]=9.682321  <-> 0.000016  
block_x[10]=10.682321  <-> 0.000016  
block_x[11]=11.682321  <-> 0.000016  
block_x[12]=12.682321  <-> 0.000016  
block_x[13]=13.682321  <-> 0.000016  
block_x[14]=14.682321  <-> 0.000016  
block_x[15]=15.682321  <-> 0.000016  
block_x[16]=16.682320  <-> 0.000016  
block_x[17]=17.682320  <-> 0.000016  
block_x[18]=18.682320  <-> 0.000016  
block_x[19]=19.682320  <-> 0.000016  
block_x[20]=20.682320  <-> 0.000016  
block_x[21]=21.682320  <-> 0.000016  
block_x[22]=22.682320  <-> 0.000016  

Follow-on chaotic maps  
diverge significantly 

Follow-on Chaotic Map 
block_x[0]=0.682320  <-> 0.860477  
block_x[1]=1.682320  <-> 0.860477  
block_x[2]=2.682321  <-> 0.000000  
block_x[3]=3.682321  <-> 0.000000  
block_x[4]=4.682321  <-> 0.000000  
block_x[5]=5.682321  <-> 0.000000  
block_x[6]=6.682321  <-> 0.000000  
block_x[7]=7.682321  <-> 0.000000  
block_x[8]=8.682321  <-> 0.000000  
block_x[9]=9.682321  <-> 0.000000  
block_x[10]=10.682321  <-> 0.000000  
block_x[11]=11.682321  <-> 0.000000  
block_x[12]=12.682321  <-> 0.000000  
block_x[13]=13.682321  <-> 0.000000  
block_x[14]=14.682321  <-> 0.000000  
block_x[15]=15.682321  <-> 0.000000  
block_x[16]=16.682320  <-> 0.671719  
block_x[17]=17.682320  <-> 0.671719  
block_x[18]=18.682320  <-> 0.671719  
block_x[19]=19.682320  <-> 0.671719  
block_x[20]=20.682320  <-> 0.671719  
block_x[21]=21.682320  <-> 0.671719  
block_x[22]=22.682320  <-> 0.671719 

follow-on linear maps  
May “absorb” the differences 



Operational “Artifacts” Discovered 

Execution of diagnosis codes led to the discovery of “operational artifacts” 

GPU-emulations and incorrect executions: code delays 
•  Unless explicitly tested for presence of GPUs, codes may be  

•  executed in “emulated mode”: long execution times 
•  incorrectly executed: incorrect results 

•  Resolved by explicitly checking for “physical” GPUs 

Data transfers errors when MPI is used to launch CUDA kernels 
•  Outputs from certain blocks has zero fractional part: 

•  Happens randomly but always the GPU block number matches 
the node number 

•  Implications are not entirely understood – potentially destabilize 
certain non-linear computations 



Simulation Results 

We simulate three types of errors:  
i.  ALU errors corrupt state by a multiplier 

•  bit flip to 1 in ALU registers 
ii.  memory errors clamp state to a fixed value 

•  stuck-at fault in RAM 
iii.  cross-connect errors modify state by a multiplier. 

•  link transmission error 

Nodes transition to a faulty mode with probability p, and 
once transitioned 

• errors type (i) and (ii) are permanent, 
• error type (iii) lasts only for a single time step 



Case of no faults: 
10-node pipeline of depth k = 10 

•  none are detected  
•  all chaotic time traces are 
identical across nodes 

Simulation Results: No Faults 

ground truth: no faults 

trajectories 

detector output: 
none                              
; 



Simulation Results 

Stuck-at faults: 
• full pipeline, spanning all 10 
nodes 
• trajectories disrupted by faulty 
nodes 

• detection within one time step 

detector output:   
two detected 

ground truth:   
two stuck-at faults 



Simulation Results 

Pipeline of single chain  
• executed by one node at time  
• chain “sweeps” across nodes in time 

Both faults are detected: 
• detection delayed until the chain 
reaches faulty node 

The total computational cost: 
• 1/10 of the case (b) 
• detection achieved, albeit delayed by 
few time steps detector output:   

two detected 

ground truth:   
two stuck-at faults 



Simulation Results 

Transient fault in interconnect 
payload lasted for one time unit  

Full pipeline spanning all nodes will 
detect such failure 

Pipeline of two chains with 
periodicity of 5 nodes is able to 
detect 

detector output:   
two detected 

ground truth:   
two transient faults 



Simulation System 

Simulations on 48-core Linux workstation: 2.23GHz AMD Opteron processors 

Computation on a single processor core and delay of 10 micro seconds to 
simulate the latency of interconnect. 

•  N = 500,000 nodes: runtimes under 2 seconds for 
 - logistic map and a pair of reciprocal operations (5 operations for CI-map).  

First-order approximation: for CI-map  
• 10 operations each with 10 micro seconds execution time, and  
• interconnect with 10 microsecond latency 

pipeline execution time is 11 seconds for N=100,000 

All chains of PCC  -map are computed in parallel 
• execution time scales linearly in N  
• under 2 minutes for million computing nodes 

2 



HP Proliant 48-core Linux workstation: 2.23GHz AMD Opteron processors 

2 Four sockets 
8 Dyes 
48 cores 



HP Proliant 48-core Linux workstation: 
2.23GHz AMD Opteron processors 

2 

Diagnosis output 

simulated  
errors 

no errors 



System Profiling and Application Tracing 
System Diagnosis and Profiling:  

• executed at the beginning for an initial system profile 
- repeated periodically or triggered by failure events.  

• typically, all system resources are devoted for initial profiling 

• our method: 
- execute diagnosis modules customized to static and silent failures in 
processing nodes, memory units and interconnects 
- generate robustness estimates from outputs of diagnosis modules. 

Application Tracing:  
• diagnosis modules are strategically inserted into application codes  

- during compilation or preprocessing 
•  confidence measures are estimated for their outputs.  

Basic idea: execution paths of these tracer codes “follow” along the same 
components as the application codes:  

• processing nodes, memory elements and interconnect links,  

Require “new” detection, profiling and tracing theory and algorithms: 
 Failure detection: schedule application around, replace nodes 
 Failure likelihood:  set application fault tolerance, estimate confidence 



Our approach: synthesis of methods from fault diagnosis, chaotic 
Poincare maps, and statistical estimation: 
a)  Diagnosis methods: identify computation errors due to 

component failures, in arithmetic and logic unit (ALU), memory 
and cross-connect, by strategically guiding the execution paths: 

i.  system diagnosis pipelines 
ii.  application traces 

b)  Poincare maps amplify effects of component failures making 
them quickly detectable, 

c)  Statistical estimation methods process data from execution 
traces to generate 

i.  system robustness profiles  
ii.  confidence estimates for applications 

 Our Approach 



Outputs of CI-maps are used to generate confidence measures for executions, 
particularly if no failures are detected 

          executed at rate 
- once every        seconds 

Under statistical independence 
probability of failure during       executions 

Confidence:  
that node failure probability is less than 

If no failures are detected in       executions 

probability of node failure during        sec 

Confidence Estimates 



Confidence Estimate for Triplicated Application 
Application triplicated with majority vote at each step:  

•  error-free under single faults 
•  makes error if there are two or more faults within “unit” time 

Application executed for duration     with application tracing detecting       faults: 
 if two or more faults detected within “unit” time: check-point 
 if single are no fault detected in all unit times: 
  confidence that application is error-free 
    

        with probability     
  under statistically independent component failures 

Qualitatively, confidence 
•  improves with lower number of faults detected 
•  improves with longer tracing period:  

•  longer      means higher 
      Note: zero errors do not imply 100% confidence 



General Confidence Estimate: 

If failures are detected in       fraction of        executions 

General confidence estimate: 

Derivation: By Hoeffding’s Inequality we have 

Derivation of Confidence Estimate: Outline 
By Hoeffding’s Inequality we have 



Confidence Estimate for Replicated Application: 
General Case 

Application replicated            times with majority vote at component level:  
•  error-free under     faults or fewer faults 
•  makes error if there are          or more faults within “unit” time 

Application executed for duration      with application tracing detecting      faults 
 if two or more faults detected within “unit” time: check-point 
 if single are no fault detected in all unit times: 
  confidence that application is error-free 
     

              with probability 

  under statistical independence of component failures   
Qualitatively, confidence 

•  improves with lower number of faults detected 
•  improves with longer tracing period 
•  also, imrpoves with replication level 

   



Conclusions 
Our approach  
(i)  utilizes light-weight computations based on chaotic and identity maps to 

detect certain classes of errors in computations, and  
(ii)  implementation for diagnosis of multi-core processors, GPUs, and hybrid 

systems 
  - tested on three hybrid systems:   

•  4 multi-core processors  
•  4 GPUs 

This approach is suitable for exascale systems: 
(a)  low computational requirements  
(b)  linear scaling of the execution time 

both for system profiling and application tracing 

Future Work: 
• These results are only a very first step 

• Implementations for high-performance machines and clusters 
• Incorporation of failure classes and application footprints 

• More analysis and simulations needed 
- understand and quantify classes of errors detected by a given set of 
Poincare and identity maps 
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