
Oak Ridge National Laboratory 
U. S. Department of Energy 

On Undecidability Aspects of Resilient 
Computations and Implications to Exascale 

Nagi Rao 

(Nageswara S. V. Rao) 

Oak Ridge National Laboratory 

7th Workshop on  

Resiliency in High Performance Computing in Clusters, Clouds, and Grids (Resilience2014) 

August 25, 2014, Porto, Portugal 

At 20th International European Conference on Parallel and Distributed Computing (Euro-Par) 

Research Sponsored by 

Applied Mathematics Program, U.S. Department of Energy 



Outline 

1.  Introduction  
2.  Context of Undecidability 
3.  Complex Faults in Exascale Systems 
4.  Decision Problems on Exascale Computations  
5.  Undecidability of Resilient Computations 
6.  Resilient Computations and Halting Problem 
7.  Proofs of Resilient Computations 
8.  Conclusions 



•  Exascale computing systems are expected to have millions of processor cores 
and other components.  
–  components with expected life-span of ten years 

•  ~100k hours/component = 10 failures/hour among 1M components  
–  codes that run for a few hours likely experience failures of several 

components. 

Inherent Failures in Exascale Computing Systems 

•  Failure rates limit the effectiveness of current 
check-point/recovery methods:  
–  Recovery times could be hours for 

Exascale systems 
–  transient silent errors may lead to 

erroneous computations 
•  Failures will be integral part of Exascale 

computations – must be explicitly accounted 
–  code outputs must be quantified with 

confidence estimates  
•  specific to system failure profile 
•  justifiable by measurements 

1M components 
~10 failures/hour 



•  Foundational works: 
–   von Neumann studied (in 1950s) mathematical aspects of achieving 

reliable computations over systems with unreliable components 
–  subsequent reliability improvements in computing systems, perhaps, 

led to such studies not being extensively continued 
•  Deployed systems: computing systems in satellites 

–  deployed over past decades - enhanced with Software-Implemented 
Hardware Fault Tolerance (SIHFT) methods to counteract errors due 
to radiation in space environments.  

But, Exascale computations present new challenges: 
–  sheer size and system complexity makes dynamic profiling of the 

failures and robustness complicated 
–  computation becomes inherently probabilistic: 

•  for most applications, 100% guarantee of robustness against 
failures in not possible 

•  requires confidence measures for code outputs – running to 
completion is not sufficient 

 Related Areas: Resilient Computations 



Faults and Computations 
Fault-Free Computing System: Program     with input     is executed error free 
produces output  

Fault: Program may crash or produce incorrect output or loop forever 
       Simple fault models: specified by function 

 data error:     replaced by  
 program or code error:    replaced by 
 execution error:         replaced by  

Simplified models: specified by separate functions 

Faults may be more complicated: stochastic, correlated, multi-valued 

universal function or Turing Machine 
 is also represented by its Godel’s number 



Faults and Resilient Computations 

Resilient Version of Program    : Another program     on fault-prone system with 
same output and halting properties as      on failure-free system 

Requirement: Resilient version       of the program     is required to produce on the 
failure-prone system            same output as original program on the failure-free 
systems: that is, 

failure-free system failure-prone system 



Individual Data, Program and Executional Faults 
(a)  Data faults: 

(b)  Program faults: 

(c) Executional Faults: 



Context of Undecidability 

Turing’s Undecidability or Uncomputability: Non-existence of algorithms for 
certain class of computing problems 

–  These are “harder” than NP-hard problems 
–  Examples: halting problem, loop detection problem, equivalence of context-

free grammar, virus detection problems 
–  Resilient Computations: Certain resilient computational problems turn out 

to be undecidable 

Godel’s Undecidability: Non-existence of mathematical proofs for true statements 
within an axiomatic system such as arithmetic system with multiplication 

–  Arithmetic systems with addition and multiplication operations have 
statements that are true but cannot be proved as theorems 

–  Resilient Computations: Certain resilience properties of computer codes 
cannot be proved 

These two results are closely related: algorithmic information theory of Gregory 
Chaitin 

Resilient computations: certain faults may embody information beyond the 
capacity of axiomatic system or finite computations 
-  not be compensated purely by mathematical or computing means 
-  but, may be handled by other means, such as fault monitors 



Complex Faults in Exascale Systems 

1.  Code Corruption: Executables may be corrupted  and lead to infinite loops 
–  condition i < N may be changed to i > 0 
–  go to statements changed to be self-referential 

2.  Errors in Parameters and Variables: infinite loops can be created by 
corrupted variable values 

–  changing boundary values of loop variables 
3.  ALU Circuit Errors: arithmetic and logic execution errors can create infinite 

loops 
4.  Program Counter Errors: loading errors in program counters will lead 

computations directed to unexpected locations 

Composite Errors: Hot-spots in server cabinets lead to overheating – that effects 
multiple parts of the system 

Language     and Turing machines: codes and data both appear as strings 
 memory errors effect them both 



Resilient Computations 

Under Programming Language 
Program      is consists of instructions 
Converted to numerical code                  using Godel numbering 
            is output of program   

Universality Theorem: there exists a universal function           such that  

Resilient version:       is resilient version of  
Functions computed on fault-prone machine: with input 

    original non-resilient program: 
    resilient-version: 

Set of original programs: 
 Examples: non-linear solvers, climate codes, … 

All their resilient versions: 
 index set: 



Undecidability of  Verification of Resilient Computations 

Resilience Property is not verifiable computationally: 
     index-set                                      is not computable – Theorem 1 
Proof outline: By contradiction – assume it is computable 

If        is computable, then the following function is partially computable    

 where         is the indicator function of set      such that 

By recursion theorem, there exists a program e such that 



Undecidability of  Verification of Resilient Computations 

Proof outline continued: by contradiction 
By universality theorem, there exists a function             such that 

Question: which set does e that computes                belongs to?  
Answer is neither as shown below 

 Case A: it is resilient code 
  implies on error-prone system:  by definition of h(.) 
   
  but its function is same as original non-resilient 

 Case B: it is non-resilient code 
  implies on error-prone system: by definition of h(.) 

  but its function is same as resilient version  



Resilient Computations and Halting Problem 

Halting Problem: HALT(      ) is true if and only if      halts on input 
 - it is well-known to be undecidable 

Loop Detection Problem: NO-LOOP(       ) is true if and only if    does 
 not loop indefinitely on input 

Fault Function: 
 replace both data and code by faulty versions 
 - it is only a special abstracted case of faults 

Resilience Versions: RESILIFY(           ) is true if and only if there exists a 
program      for failure-prone system that: 

takes input      and produces the same output as    with input       
 on failure-free system 



Uncomputability of RESILIFY(          ) 

Loop Creating Faults:  

RESILIFY(            ) is not a computable predicate – Theorem 2  
Proof outline: Equivalent to RESILIFY(                ) where    is the Identity function 
that creates no faults 

 input and code are changed to       and       instantaneously 
It is equivalent to NO-LOOP(            ), which is non-computable: 

 Consider the program: 
  [P]: if  NO-LOOP(         ) go to  P 
   else return NO 
 index of the code 
 NO-LOOP(         ) is true if and only if  NO-LOOP(        ) is false 

 Using             we have contradiction  
  NO-LOOP(          ) is true if and only if  NO-LOOP(         ) is false 



Resilient Computations on Turing Machines 
A Turing Machine consists of: 
•  infinite tape of cells – read/write head that process them one at a time, and 

moves left or right or no motion 
•  Finite set of states that control the computation 
TM  M starts with input w on the tape, and goes through state transitions and 
writes output on to the tape 
Same computation is done by Universal TM (UTM) by specifying both M and w as 
input on tape 

Faults are more “concretely” visualized electro-mechanically on TM: 
–  memory faults: contents of cell may be corrupted 
–  code errors: states may be corrupted 

•  more easily see if code is written on tape and executed by UTM  
–  execution errors: 

•  state transition faults – analogous to program counter errors 
•  read/write head errors – analogous to memory to register transfer 

errors 
Failure-prone version of        is denoted by        under fault function 



Faults and Resilient Computations on TM 

Resilient Version of TM     : Another TM       on fault-prone system with same 
output and halting properties as      on failure-free system 

Requirement: Resilient version       of TM        is required to produce under the 
failure conditions the same output as the original failure-free TM: 

UTM UTM 



Resilient Computations on Turing Machines 

Resilient Turing Machine:       operates under fault function 
•  RTM takes as input TM       and its input  
•  halts and produces same output as      when executed by failure-free UTM 

with input 

Resilient Turing Machines do not exist under executional and data failures – 
Theorem 3 

Proof Outline: If       exists: it detects when       does not halt, and interject 
and produces failure-free output of 
Halting problem: 

yes 

no 

no/no-halt 

yes 

Yes  =>      outputs  no or does not halt 

no 

no/no-halt yes 

No   =>       outputs yes 

yes 



Difficulties of Mathematical of Resilience Proofs 

Simple Computing Example: Compute 
Computations are limited to multiplications, additions and these functions – all 
are integer computations 

Computing Errors: limit magnitude of operand to     
     – zeroing of higher-order bits in registers:  it computes 

Potential Solution: program that makes up the difference by computing and 
adding the “rest” of the value such that: 

Difficulty: Proof of this resilience property requires us to contradict Fermat’s last 
theorem that claims no solution exists for          : 

Proof has remained open for 300 years until 1995 by Andrew Wilks 

Illustration of difficulties in proving a rather “simple” resilience properties 



Beyond Halting Problem: Relativized Computations 

Foundational Question: Does solving the Halting problem give us complete 
resilience? 
Short answer: most likely NO – certain complex faults may remain that still 
lead to undecidable problems 

Relativized Complexity Classes: Model Halting Problem solution as an oracle 
to abstract away the complexity: 

Relativized Rice Theorem establishes that assessing general resilience 
properties of computations remains undecidable under the Halting Problem 
Oracle. 

Resilient Computations:  
•  Halting problems address classes of problems related to creation of infinite 

loops 
•  Ensuring that outputs of resilient versions are identical to output of original 

codes poses additional challenges somewhat analogous to checking equality 
of context-free grammars: 
–  yet another class of undecidable problems 



Conclusions 

Addressed computational aspects of resilient computations under broad class of 
faults 

Resilient computations present significant computational challenges: 
(a)  asserting resiliency of computations is non-computable  
(b)  mathematical proofs of resilience of algorithms are undecidable 

These problems are not solvable in general form by computations and mathematical 
proofs alone: but, 
•  resilient computations can be designed for specific classes 
•  additional fault detection methods could make some problems computable 

In general, these results motivate: deeper investigations of fault classes and resilient 
computations customized for them with complementary information 

Future Work: 
• These results are only a very first step 
• Deeper study of fault classes in needed 

- impact on computations and resilience mechanisms 
• Study of hierarchy of undecidable problems and corresponding faults (vice 
versa): 

-  is there a taxonomy of faults that reflects this hierarchy 
-  seems reasonable to expect: some fault are harder to protect 

against 



Thank you 


