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Introduction

 High-performance computing

 Millions of low-power cores
 Technology scaling

 Increased sensitivity to external events
 These can manifest themselves as transient faults

 Software implemented hardware fault tolerance (SIHFT)

 Checkpointing
 N-Modular Redundant execution (NMR)

How to pick N? 
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Motivation
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Motivation

 Base decision of N on...

 Reliability of operation

 Dependencies and reuse of results

 Performance cost and its relation to reliability

 Reliability threshold

 Hard to manually pick N P ≥ 0.99999

+ *
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Outline

 Approach
 Execution/Fault/Performance model

 Geometric programming

 Formulation of optimization problem

 1.mn voter system

 Experimental evaluation

 Results

 Conclusion
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Approach – Execution/Fault/Performance model

 Execution model
 Control-flow graph

 Fault model
 Probability of successful execution:  

 Probability of operation independent 

from operand: 

 Performance model
 Constant weights

 Performance µ  1/probability of successful execution

01: x = a+b
02: y = 2*x
03: x = c+y

04: z = f(x)
...

05: z = g(x)
...

06: w = z*d
...

Pop (i)∏x∈Dep(i) P x

Pop (i)
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Approach – Geometric programming

Mononomial function

g ( x)=c∏i
x i
ai c>0, xi∈ℝ+ ,ai∈ℝ

Posynomial function

f (x)=∑k
g k (x)=∑k

c k∏i
x i
aik c>0, x i∈ℝ+ ,a i∈ℝ

Geometric programming

minimize f
0
(x)

s.t. f
i
(x) ≤ 1 i = 1... N

p

g
j
(x) = 1 j = 1... N

m

Standard 
form
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Approach – Geometric programming

Mononomial function

g ( x)=c∏i
x i
ai c>0, xi∈ℝ+ ,ai∈ℝ

Posynomial function

f (x)=∑k
g k (x)=∑k

c k∏i
x i
aik c>0, x i∈ℝ+ ,a i∈ℝ

Geometric programming

minimize f
0
(x)

s.t. f
i
(x) ≤ 1 i = 1... N

p

g
j
(x) = 1 j = 1... N

m

Standard 
form

minimize log(f
0
(ey))

s.t. log(f
i
(ey)) ≤ 0 i = 1... N

p

log(g
j
(ey)) = 0 j = 1... N

m

Convex
form

y
i
 = log(x

i
)
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Approach – Formulation of optimization prob.
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Approach – Formulation of optimization prob.
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Approach – Formulation of optimization prob.

 Probability that NMR functions correctly: P
NMR

(N, p
comp

)

 Computing N for an instruction with P
op 
and 

 
P

op

init :

Find N such that P
op  

≥ P
NMR

(N, P
op

init)

p
comp

p
comp

...

N

11
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Approach – 1.mn voter

L1: x = f(...)

x
0
 = f(...)

x
1
 = f(...)

x
2
 = f(...)

x = UNIFY(x
0
, x

1
, x

2
)

3MR

A = <a
0
,a

1
,a

2
>

B = <b
0
,b

1
,b

2
>

C = <c
0
,c

1
,c

2
>

UNIFY(A,B,C) = <a
0
b
0
+ a

0
c
0
 + b

0
c
0
, a

1
b
1
+ ...>

Unify – Majority voting

3MR: 3 products, 2 terms in each



24

Approach – 1.mn voter

L1: x = f(...)

x
0
 = f(...)

x
1
 = f(...)

x
2
 = f(...)

x
3
 = f(...)

x
4
 = f(...)

x = UNIFY(x
0
, x

1
, ...)

5MR

Unify – Majority voting

3MR: 3 products, 2 terms in each
5MR: 10 products, 3 terms in each
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Approach – 1.mn voter

L1: x = f(...)

x
0
 = f(...)

x
1
 = f(...)

x
2
 = f(...)

x
3
 = f(...)

x
4
 = f(...)

x
5
 = f(...)

x
6
 = f(...))

x = UNIFY(x
0
, x

1
, ...)

7MR

Unify – Majority voting

3MR: 3 products, 2 terms in each
5MR: 10 products, 3 terms in each
7MR: 35 products, 4 terms in each
...
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Approach – 1.mn voter

L1: x = f(...)

x
0
 = f(...)

x
1
 = f(...)

x
2
 = f(...)

IF VALID(x
0
,x

1
,x

2
)

x = UNIFY(x
0
, x

1
, x

2
)

ELSE
x
3 
= UNIFY(x

0
, x

1
, x

2
)

x
4
 = f(...)

x
5
 = f(...)

IF VALID(x
3
,x

4
,x

5
)

...

1+m

m

Stage 1

Stage 2

n stages

...
1.2-n

 m – Number of redundant executions per stage

 n – Number of stages 
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Approach – 1.mn voter

 Coping with high N

 Choosing N partially delayed until runtime 

N
must

N
may

3

5

7

NMR
1.2-n

1.4-n

...
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●Experimental evaluation – Kernels

 Programs

1) Approx-log

2) Determinant

3) Gaussian

Median filtering using sorting network 

4) Bubblesort

5) Minimum Comparison

6) Minimum Delay
 

 Characteristics
 Small kernels (~10-40 LOC), small input sets (normal execution time ≤ 10s)

 Picked to demonstrate pros and cons of our approach and not based 
on application domain (HPC)
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●Experimental evaluation – Resilient versions

 Categories
 Original

 NMR (N=3,5,7)

 1.2-n (n = 2,3,4)

 Our approach (OPT)

 Automatic analysis/transformation

AnalysisMIPS binary

CVX/Matlab

Opt. problem

DWARF
Inst → Src map

FTTransformAnalysis

Kernel
Source-code

ROSE

GCC
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●Experimental evaluation – Environment

 MIPS 5-stage 32-bit in-order processor in Gem5

 Virtual memory system modified to return random data on out-of-bounds 
read/write  

 Fault-injected into execute-stage with probability ~ 

 Only inject in instructions belonging to kernel 

 Perform limit study over different λ
k 
(1.0, 0.1, 0.01)

 Area results from synthesis of an in-house MIPS R3000-like 
implementation 

Fetch Decode Execute Memory Write-back

eλ k (areaunit/ areaTotal )
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●Experimental evaluation – Environment

 MIPS 5-stage 32-bit in-order processor in Gem5

 Virtual memory system modified to return random data on out-of-bounds 
read/write  

 Fault-injected into execute-stage with probability ~ 

 Only inject in instructions belonging to kernel 

 Perform limit study over different λ
k 
(1.0, 0.1, 0.01)

 Area results from synthesis of an in-house MIPS R3000-like 
implementation 

Fetch Decode Memory Write-back

Add

Mul

Comp

Shift

And

...

eλ k (areaunit/ areaTotal )
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●Experimental evaluation – Procedure

 2000 runs for each kernel version and each λ
k
, 

runs classified as:
 Incorrect

 Correct

 Results
 Reliability (#correct runs/2000)

 Performance (number of CPU cycles) – for runs that were 
classified as correct
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Outline

 Approach

 Experimental evaluation

 Results
 NMR vs 1.2-n

 Orig. vs OPT

 3MR vs OPT

 1.2-2 vs OPT

 Conclusion
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●Results – NMR vs 1.2-n

 
Reliability

NMR

1.2-n

1.0 0.010.1λ
k

For NMR: Reliability(N) µ  1/N

For 1.2-n: Reliability(N) µ  Const.
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●Results – NMR vs 1.2-n

 
Performance

NMR

1.2-n

1.0 0.010.1λ
k

For 1.2-n: Higher offset

For NMR: Higher slope

Missing values!
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●Results – Orig. vs OPT

Reliability

Performance
Min

Median

Max

λ
k

Reference line

Rel(Orig)-Rel(OPT)

PercentageChange(Perf(Orig),Perf(OPT))

λ
k
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●Results – Orig. vs OPT

Approx-log

Determinant

Gaussian

Bubblesort

Mincomp.

Mintime.

Reliability Performance
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●Results – Orig. vs OPT

Approx-log

Determinant

Gaussian

Bubblesort

Mincomp.

Mintime.

Reliability Performance

0% for 
OPT 
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●Results – 3MR vs OPT

Approx-log

Determinant

Gaussian

Bubblesort

Mincomp.

Mintime.

Reliability Performance
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●Results – 1.2-2 vs OPT

Approx-log

Determinant

Gaussian

Bubblesort

Mincomp.

Mintime.

Reliability Performance



42

●Conclusion

 N must be chosen with care

 Delegating (part-of) decision until runtime can 
improve system robustness

 Result varies with λ
k

 Future work should consider uncertainty to a larger 
extent
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Thank You!
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