
The External Recovery
Arkadiusz D. Danilecki

Anna Kobusińska

Mateusz Hołenko

Piotr Zierhoffer

Poznań University of Technology

This work was supported by the Polish National Science Center under
Grant No. DEC-2011/03/D/ST6/01331

1 z 49 Poznan University of Technology

The motivation
Large systems are hard to maintain

2 z 49 Poznan University of Technology

The motivation
Large systems are hard to maintain

3 z 49 Poznan University of Technology

Motivation continued
Large systems are error-prone

During execution, dependencies are created between nodes in
different subsystems

4 z 49 Poznan University of Technology

Motivation continued
Large systems are error-prone

During execution, dependencies are created between nodes in
different subsystems

5 z 49 Poznan University of Technology

Motivation continued
Large systems are error-prone

During execution, dependencies are created between nodes in
different subsystems

6 z 49 Poznan University of Technology

Motivation continued
Large systems are error-prone

During execution, dependencies are created between nodes in
different subsystems

How to prevent effects of one node's crash to spill over to other parts
of system?

Solution:
Log messages exchanged between nodes belonging to different subsystems
External recovery:
System is recovered from the outside, using only logged messages which were
sent/received to/from other subsystems.

7 z 49 Poznan University of Technology

A problem
What are the minimal restrictions which must be put on subsystem's
independence in order to make the external recovery possible?

Question provoked by our earlier research on recovery in SOA systems,
starting in 2009:

Maybe we should care not just about algorithm's performance, but
also on how much restriction an algorithm puts on independence
of recovered system?

8 z 49 Poznan University of Technology

The nature of the restrictions
Behavior restriction

Before-hand imposed restrictions, allowing only for some possible
history executions; e.g. what amount of determinism is allowed; who
can send what to whom; etc.

Requiring cooperation

Subsystem must be aware of the external recovery; control messages
are exchanged or messages contain data relevant only for the
recovery; execution during the recovery may be different from normal
execution

Requiring information

Subsystem structure must be known, e.g. number of nodes or their
roles; history of execution is made known to the outside world (e.g.
who sent what to whom)

9 z 49 Poznan University of Technology

System Model

10 z 49 Poznan University of Technology

Causal and Truly Causal relations

Note

Similarly we define causal relation on process' states

Some causal relations are not dictated by application logic. But there are
also events truly caused by some others (Tarafdar, Garg 1998), where
relation of true causality is de facto a reflection on application logic.

sen () ↦ receiv ()di m1 ej m2

even ↦ eventk
i tk+1

i

even ↦ even ∧ even ↦ even ⇒ even ↦ event
p
i tl

j tl
j tm

k t
p
i tm

k

11 z 49 Poznan University of Technology

Inputs and sessions
Input:

Message sent to subsystem from the outside world

Session of input message *m*:

All events truly caused by m

We assume all events belong to some session and that sessions do not
overlap

12 z 49 Poznan University of Technology

Outputs and reactions
Output:

Message sent from a subsystem to the outside world

Reaction to input message *m* :

All outputs, whose send events were truly caused by m

We assume all events belong to some session and that sessions do not
overlap

13 z 49 Poznan University of Technology

Consistent state and externally
visible state

Consistent State:

Informally, a global state which could possibly happen in some
execution without a crash at some global time t.

Externally equivalent states:

For any given output, it can be a product of only limited set of global
states. Those states are externally not-distinguishable - they are
equivalent from the points of the outside world (observable states,
Bostan, Atkinson, 2009)

14 z 49 Poznan University of Technology

Failure model
Fail-stop

After crash all are restarted from initial, consistent state

Failure detector notifies interceptor about restart

Interceptor does not crash (or it crashes, but is transparently
recovered)

Crashes are rare

Orphaned messages are detected and discarded (e.g. using epoch
numbers)

15 z 49 Poznan University of Technology

Determinism
Piecewise determinism

Non-deterministic events (usually only receive) have their
determinants. You can capture all necessary determinants to replay the
execution. Order of receive events is important.

Send-determinism

Informally, ordering of receive events is not important (but what is
received IS important), send events are always the same given the
same messages are received.

Channel-determinism

Informally, ordering of receive is not important, send events along
some channel are always the same (but ordering along different
channels may be different).

16 z 49 Poznan University of Technology

Restricting the behavior

17 z 49 Poznan University of Technology

Restricting the behavior (1)
Imagine we want to be able to treat a subsystem from the outside as a
single, PWD node.

Note

If processes in works under PWD, then they cannot be
externally recovered unless they either cooperate with or
expose information about its behavior.

P
I

18 z 49 Poznan University of Technology

Restricting the behavior (2)
Within each session, processes are send-deterministic

Each session produces a known a priori number of k outputs
(different for every input) and no event happens within a sessions
when k's output is sent to the outside world.

Note

One can abandon the second restriction, but that would require
cooperation with P

19 z 49 Poznan University of Technology

Algorithm

20 z 49 Poznan University of Technology

Algorithm

21 z 49 Poznan University of Technology

Algorithm

22 z 49 Poznan University of Technology

Algorithm

23 z 49 Poznan University of Technology

Algorithm

24 z 49 Poznan University of Technology

Algorithm
var Q: queue of messages
var L: queue of messages
var Out: queue of messages
var state: enum { busy, ready} ← ready
var count: integer

when received M from W at I // M from W is received at interceptor
Q ← Q ⋃ M // M is appended at the end of Q

when Q ≠ 0 ⋀ state = ready at I
state ← busy
M ← Q.front
count ← 0
send M to P // P is destination of M within a subsystem

25 z 49 Poznan University of Technology

Algorithm cont.
when detected restart(P) at I

 Q ← L ⋃ Q // prepends L to Q
 state ← ready

when received M from P at I // M from P is received at interceptor
 if M ∉ Out then
 Out ← Out ⋃ M
 forward M
 else
 discard M
 end if
 count ← count + 1
 if count = K(M) then // K(M) returns known a priori number of M's outputs
 M ← Q.front
 Q ← Q \ M
 state ← ready
 if M ∉ L then
 L ← L ⋃ M
 end if
 end if

26 z 49 Poznan University of Technology

Discussion
No cooperation required between and

No informations exposed to

Minimal restrictions on behavior of - either restrictions have to be
stronger, or informations would have to be exposed

No difference between normal execution and recovery

Only for applications with call-return pattern

After crash, the internal structure of may change: some nodes
may be permanently removed, some may be added

An externally equivalent state of may be replicated on other
subsystem with different number of nodes etc.

As it serializes processing both during normal execution and during
the recovery, obviously it could not have impressive performance

P I

I

P

P

P

27 z 49 Poznan University of Technology

Restricting more than

one axis

28 z 49 Poznan University of Technology

Restrictions
Processes are send-deterministic within each session

Sessions are serializable (many serializations could be possible) -
explained on a next slide

Size of reaction to M is known a priori (but sessions may still continue
after sending last output)

Whenever a process receives a message within a session, it must
eventually send a message (possibly, an output)

Messages have additional fields: session identifier and identifiers of
all preceding sessions.

Information about session serialization is exposed.

29 z 49 Poznan University of Technology

Serializable sessions
When P participates in session A, and then participates in session B,
then A < B on P

If not A < B or B < A on some P, then A || B

If A < B on some P, then on all P, A < B, or A || B

30 z 49 Poznan University of Technology

Algorithm

31 z 49 Poznan University of Technology

Algorithm
Each process must maintain prec variable (initially empty) containing
session identifiers

Each message has two fields: id of the session and prec field

When message is sent, variable prec is sent along as a prec field

32 z 49 Poznan University of Technology

Algorithm

33 z 49 Poznan University of Technology

Algorithm

34 z 49 Poznan University of Technology

Algorithm

35 z 49 Poznan University of Technology

Algorithm

36 z 49 Poznan University of Technology

Algorithm

37 z 49 Poznan University of Technology

Algorithm

38 z 49 Poznan University of Technology

Algorithm
message PACKET is record of
 id: integer // session identifier
 prec: set of integers
 msg: data // original message

Session is record of
 msg: message // input which started the session
 sId: integer // session identifier
 prec: set of integers // preceding sessions
 out: set of messages // reaction to msg
 fwd: boolean

Variables
 var Mⁱ: set of Sessions
 var F : set of integers // finished sessions
 var M': set of Sessions // serialized sessions (during recovery)

 var Mᵒ: set of Sessions // not yet fully serialized sessions (during recov
 var x : Session
 var pkt: PACKET
 var mode: enum { ready, busy } ← ready

39 z 49 Poznan University of Technology

Algorithm
when received M from W at I
 x.msg ← M
 x.sId ← "new unique session identifier"
 x.prec ← F
 x.out ← ∅
 Mⁱ ← Mⁱ⋃x
 pkt.data ← M
 pkt.sId ← x.sId
 pkt.prec ← ∅
 wait until mode = ready
 send pkt to P

when received M from P at I
 x ← { x: x∈ Mⁱ ⋀ x.sId = M.sId }
 Mⁱ ← Mⁱ \ x
 if M.data ∉ x.out then
 x.prec ← x.prec ⋃ M.prec
 x.out ← x.out ⋃ M.data
 if |x.out| = K(M) then
 F ← F ⋃ x.sId
 end if

40 z 49 Poznan University of Technology

Algorithm
when ∃x∈Mⁱ:x.sId ∈ F ⋀ x.fwd = false ⋀
 ∀y∈Mⁱ,y.sId∉F⟹ x.sId∈ y.prec ⋁ y.sId ∈ x.prec
 x.fwd ← true
 foreach msg ∈ x.out do
 send msg to W
 end for

41 z 49 Poznan University of Technology

Algorithm
when detected restart(P) at I
 mode ← busy
 M' ← {x: x∈ Mⁱ⋀x.fwd=true}

 Mᵒ ← Mⁱ\M'
 while M' ≠ ∅ do
 foreach x∈M' do
 if x.prec = ∅ then
 break // at least one such element
 // must exist, since sessions are serializable
 end if
 end for
 pkt.msg ← x.msg
 pkt.prec ← ∅
 pkt.sId ← x.sId
 send pkt to P
 for i ∈ {1..K(M)} do
 receive pkt from P
 discard pkt
 end for
 M' ← M' \ x

foreach x∈ Mᵒ do

42 z 49 Poznan University of Technology

 end for
 mode ← readyDiscussion

Serializes execution during recovery; expect performance penalties.
Can be avoided if cooperates with (message m's processing is
suspended if m.prec ⊈ prec

Session serialization does not have to be repeatable; replicable
serialisation enforced during recovery

Does not require knowledge about structure of (number of nodes)
nor exact history (who sent what to whom)

P I

P

43 z 49 Poznan University of Technology

Conclusions

44 z 49 Poznan University of Technology

Conclusions
Algorithms graded not just by the performance, but also but the
restrictions they put on a system

More flexibility by imposing restrictions (e.g. number of nodes can be
changing), this flexibility could be exploited by applications

You can restrict only one aspect of independency (behavior)

45 z 49 Poznan University of Technology

Other results
Things which didn't fit in a paper

Manetho based (exposing information about history and number of
nodes, requires cooperation and tagging messages, PWD processes)

Event-logger inspired (exposing information about history, number of
nodes, requires cooperation. Maintaining logs with message ids,
flushed to interceptor each time process sends a message,
complicated recovery)

Forced determinism (transformation of PWD into quasi-deterministic
with a priori total order messaging primitives)

46 z 49 Poznan University of Technology

Future work
Implementation

Performance tests

Other minimal results?

More types of applications (e.g. not with just one input)

47 z 49 Poznan University of Technology

Thank you!

48 z 49 Poznan University of Technology

Source: external_pres.rst
48/48

49 z 49 Poznan University of Technology

