
.

FlipIt: An LLVM Based Fault Injector for
HPC

7th Workshop on Resiliency in High Performance Computing (Resilience)
in Clusters, Clouds, and Grids

Jon Calhoun, Luke Olson, and Marc Snir

University of Illinois at Urbana-Champaign

25 August 2014

Jon Calhoun jccalho2@illinois.edu FlipIt: An LLVM Based Fault Injector for HPC 1/19...

1/19

.

Classification
Faults lead to errors, and can be classified into two groups:

Hard
• Faults that are reproducible (non-transient)–e.g. the inability

to communicate with a node that is offline
• Leads to application crashes
• Recover using checkpoint-restart

Soft
• Faults where activation is not systematically reproducible

(transient)–e.g. a bit-flip caused by a charged particle
• Leads to a silent data corruption (SDC)
• We can recover if we know they occurred

Jon Calhoun jccalho2@illinois.edu FlipIt: An LLVM Based Fault Injector for HPC 2/19...

2/19

.

Bit-flips Happen

• Bit-flips can occur by alpha particles or neutrons interacting
with silicon based transistors

• Experienced one a daily basis on large scale HPC systems
• BlueGene/L at the LLNL produced an L1 cache bit-flip every

3-4 hours

Jon Calhoun jccalho2@illinois.edu FlipIt: An LLVM Based Fault Injector for HPC 3/19...

3/19

.

Fault Model

• Memories are protected by error correcting codes (ECC) and
chipkill; therefore, lets not make this our primary focus

• Faults arise in processor computations and manifest as register
perturbations (single bit-flip)

Jon Calhoun jccalho2@illinois.edu FlipIt: An LLVM Based Fault Injector for HPC 4/19...

4/19

.

What is LLVM?

• The LLVM Project is a collection of modular and reusable
Static Single Assignment (SSA)-based compiler and toolchain
technologies developed at the University of Illinois

• LLVM is used by a wide variety of commercial and open source
projects as well as academic research

Jon Calhoun jccalho2@illinois.edu FlipIt: An LLVM Based Fault Injector for HPC 5/19...

5/19

.

Fault Injector

• To enable bit-flips as single bit permutations, our fault injector
extends the LLVM fault injector KULFI with the following
additions:
◦ Support for complex pointer types
◦ Ability to work with multiple source files simultaneously
◦ User customized fault distribution and event logger
◦ Support for a larger subset of the LLVM instructions
◦ MPI rank aware

• Fault sites are enumerated at compile time, but activation is
done at runtime (dynamic injections)

Jon Calhoun jccalho2@illinois.edu FlipIt: An LLVM Based Fault Injector for HPC 6/19...

6/19

.

Compiler Pass
define i32 @add(i32 %a, i32 %b) #0 {
entry:

%add = add nsw i32 %a, %b
ret i32 %add

}

(a) Original LLVM IR.

define i32 @add(i32 %a, i32 %b) #0 {
entry:

%add = add nsw i32 %a, %b
%crptAdd = call i32 @corrupt(i32 0, i32 1,

double 0.01, i32 3, i32 %add)
ret i32 %crptAdd

}

(b) Transformed LLVM IR.

Figure : Code Transformation to Inject Faults.

Corrupt function’s arguments: fault site index, boolean for one
injection per active rank, injection’s probability of experiencing a
fault, in which byte to flip the bit, and the data to corrupt

Jon Calhoun jccalho2@illinois.edu FlipIt: An LLVM Based Fault Injector for HPC 7/19...

7/19

.

Injection Logic..
Algorithm 1: Generic corrupt logic.
Input: siteProb: Probability that this instruction is faulty

siteIndex: Unique index of this fault site
data: Value eligible for corruption

Result: Data unmodified(no injection), or data with a single bit-flip(injection)
1 if ¬ shouldInject(injectorOn, siteProb) then
2 return data;
3 else
4 bitPosition← random bit position in targeted byte;
5 logInjection(siteIndex, bitPosition);
6 datacorrupt ← data⊕ (0x1≪ bitPosition);
7 return datacorrupt;

Algorithm 2: Basic shouldInject logic.
Input: siteProb: Probability that this instruction is faulty

injectorOn: Boolean signifying if injector is on
rankInject: Boolean signifying if rank is faulty

Result: Boolean signifying if an injection will occur
1 P ← probability();
2 if injectorOn and siteProb > P and rankInject = TRUE then
3 return TRUE;
4 else
5 return FALSE;

Jon Calhoun jccalho2@illinois.edu FlipIt: An LLVM Based Fault Injector for HPC 8/19...

8/19

.

Source Code Modifications
Source Code
• Minimal three line modification to main that includes a header

file, initializes, and finalizes the fault injector
• Other calls to FlipIt functions can be added to allow more user

control

#include "/path/to/fault/lib/corrupt.h"
#include <mpi.h>
int main(int argc, char** argv)
{

MPI_Init(&argc, &argv);
int id; int seed = 71;
MPI_Comm_rank(MPI_COMM_WORLD, &id);
FLIPIT_Init(id, argc, argv, seed);
foo();
FLIPIT_Finalize(NULL);
MPI_Finalize();

}

Jon Calhoun jccalho2@illinois.edu FlipIt: An LLVM Based Fault Injector for HPC 9/19...

9/19

.

Makefile Modifications

• You can do it the long way by adding the following commands
for each source target:
1. Compile source code to LLVM IR
2. Run compiler pass over the LLVM IR specifying several

arguments
3. Compile to object code
• To make this process easier and less error prone we provide a

script which wraps this process. To use it replace the compiler
in the makefile with the script

• To enable successful compilation of MPI application, the
compiler command wrapped by mpicc is stored inside a config
file used by our wrapper to communicate information to the
compiler pass

Jon Calhoun jccalho2@illinois.edu FlipIt: An LLVM Based Fault Injector for HPC 10/19...

10/19

.

What does the compiler pass generate?
When the compiler pass is operating on the LLVM IR it is
enumerating all possible fault sites inside the targeted functions
and recording information about the site inside a fault site log

This injection log contains:
• Unique fault site number
• Type of injection based upon data type or usage
◦ pointer - refers to all calculations directly related to use of a

pointers (loads, stores, and address calculation)
◦ control - refers to all calculations of branching and control flow

(comparisons for branches and modification of loop control
variables)

◦ arithmetic - refers to mathematical operations
• If the instruction’s result or operand is corrupted
• Source line number

Jon Calhoun jccalho2@illinois.edu FlipIt: An LLVM Based Fault Injector for HPC 11/19...

11/19

.

User Control

To enhance user control over fault injection we provide:
• The ability to set a custom probability calculation function
• The ability to define custom probabilities for each instruction

type
• The ability to define a custom logging function that will be

called on every injection
• The ability to select a subset of MPI ranks for injection
• The ability to change active MPI ranks and turn off/on

injector state
• The ability to select a subset of fault sites without need for

recompilation

Jon Calhoun jccalho2@illinois.edu FlipIt: An LLVM Based Fault Injector for HPC 12/19...

12/19

.

Experiments on Hypre

• We compile sections of Hypre with our fault injector to look at
SDCs that arise during the solving of a linear system

• To solve the linear system we use Algebraic Multigrid (AMG)
with one iteration of Jacobi relaxation for smoothing

• The problem is a 2D Laplacian with zero on the boundaries
• Profiling Hypre allows us to determine the call stack inside

HYPRE_BoomerAMGSolve, and we select all these functions for
injection

• We test on Blue Waters using 16 processes per node

Jon Calhoun jccalho2@illinois.edu FlipIt: An LLVM Based Fault Injector for HPC 13/19...

13/19

.

Scalability on Hypre
Each execution of Hypre has the fault injector on, but the the
probability of injecting a fault is set to 0 for all instructions
As we increase the number of MPI processes the overhead of the
fault injector decreases

20 21 22 23 24 25 26 27 28 29 210 211 212 213

Processes

10-2

10-1

100

101

102
Ti

m
e(

se
c)

Injector
No Injector

Figure : Weak scaling of Hypre with approximately 16,384 unknowns
per process

Jon Calhoun jccalho2@illinois.edu FlipIt: An LLVM Based Fault Injector for HPC 14/19...

14/19

.

Selective Injection in Hypre
We selectively flip a bit inside the calculation of the first element
of the residual vector on the finest level just before restriction
The name of the trend indicates which bit is flipped in the 64-bit
floating point number

0 5 10 15 20
Iteration

10-8

10-5

10-2

101

104

107

1010

1013

1016

1019

1022
Re

la
tiv

e
Re

si
du

al

Bit 63
Bit 58
Bit 56
Bit 54
Bit 52
Bit 50
Bit 48

Bit 40
Bit 32
Bit 24
Bit 16
Bit 8
Bit 0
No SDC

Figure : Selective injection in residual calculation on process 0 of 8
processes with approximately 16,384 unknowns per process.

Jon Calhoun jccalho2@illinois.edu FlipIt: An LLVM Based Fault Injector for HPC 15/19...

15/19

.

Effects of Different Injection Types in Hypre
Table : Results of injecting a single fault of a certain type as classified
by FlipIt

Pointer Control Arithmetic All
Crash 41 29 21 29

More Iterations 6 0 6 4
Same Iterations 53 71 73 67

• Injection into pointers has a corresponding increase in the
percent of runs that crash

• Injection into the mathematics of AMG increases the percent
of runs that require a higher number of iterations required to
converge

• Injection into control yields a small increase in the percent of
runs that crash due taking incorrect paths and incorrect
indexing

Jon Calhoun jccalho2@illinois.edu FlipIt: An LLVM Based Fault Injector for HPC 16/19...

16/19

.

Conclusions

• We are headed toward a faulty future, and need to develop
and test methods to detect silent errors

• Our fault injector FlipIt provides a high degree of
customizability can be used to test these methods

Jon Calhoun jccalho2@illinois.edu FlipIt: An LLVM Based Fault Injector for HPC 17/19...

17/19

.

Acknowledgments

• This work was sponsored by the United States Air Force Office
of Scientific Research under grant FA9550-12-1-0478

• This research is part of the Blue Waters sustained-petascale
computing project, which is supported by the National Science
Foundation (awards OCI-0725070 and ACI-1238993) and the
state of Illinois. Blue Waters is a joint effort of the University
of Illinois at Urbana-Champaign and its National Center for
Supercomputing Applications.

Jon Calhoun jccalho2@illinois.edu FlipIt: An LLVM Based Fault Injector for HPC 18/19...

18/19

.

Thank you

Any questions?

FlipIt is available on github:
https://github.com/aperson40/FlipIt

Jon Calhoun jccalho2@illinois.edu FlipIt: An LLVM Based Fault Injector for HPC 19/19...

19/19

