
SSI-OSCAR
Single System Image - Open Source

Cluster Application Resources

Geoffroy Vallée, Thomas Naughton and Stephen L. Scott
Oak Ridge National Laboratory, Oak Ridge, TN, USA

2006 OSCAR Symposium St. John's, Newfoundland, Canada May 17, 2006

Tutorial Structure

• OSCAR Overview
– Brief background and project overview
– Highlight core tools leveraged by OSCAR
– Describe the extensible package system
– Summary of “spin-off” projects

• SSI-OSCAR
– Presentation of SSI concept
– Overview of the Kerrighed SSI
– Overview of SSI-OSCAR Package

OSCAR Project Overview

OSCAR Background
• Concept first discussed in January 2000

• First organizational meeting in April 2000
– Cluster assembly is time consuming & repetitive
– Nice to offer a toolkit to automate

• First public release in April 2001

• Use “best practices” for HPC clusters
– Leverage wealth of open source components
– Target modest size cluster (single network switch)

• Form umbrella organization to oversee cluster efforts
– Open Cluster Group (OCG)

Open Cluster Group
• Informal group formed to make cluster computing more

practical for HPC research and development

• Membership is open, direct by steering committee
– Research/Academic
– Industry

• Current active working groups
– [HPC]-OSCAR
– Thin-OSCAR (diskless)
– HA-OSCAR (high availability)
– SSI-OSCAR (single system image)
– SSS-OSCAR (Scalable Systems Software)

OSCAR Core Organizations

What does OSCAR do?
• Wizard based cluster software installation

– Operating system
– Cluster environment

• Automatically configures cluster components

• Increases consistency among cluster builds

• Reduces time to build / install a cluster

• Reduces need for expertise

Design Goals
• Reduce overhead for cluster management

– Keep the interface simple
– Provide basic operations of cluster software & node administration
– Enable others to re-use and extend system – deployment tool

• Leverage “best practices” whenever possible
– Native package systems
– Existing distributions
– Management, system and applications

• Extensibility for new Software and Projects
– Modular meta-package system / API – “OSCAR Packages”
– Keep it simple for package authors
– Open Source to foster reuse and community participation
– Fosters “spin-offs” to reuse OSCAR framework

OSCAR Wizard

Open Source Cluster Application Resources

Step 1 Start…

Step 2

Step 3
Step 4

Step 5

Step 7
Step 8 Done!

Step 6

OSCAR Core

OSCAR Components
• Administration/Configuration

– SIS, C3, OPIUM, Kernel-Picker & cluster services (dhcp, nfs, ntp, ...)
– Security: Pfilter, OpenSSH

• HPC Services/Tools
– Parallel Libs: MPICH, LAM/MPI, PVM
– OpenPBS/MAUI
– HDF5
– Ganglia, Clumon, … [monitoring systems]
– Other 3rd party OSCAR Packages

• Core Infrastructure/Management
– System Installation Suite (SIS), Cluster Command & Control (C3), Env-

Switcher
– OSCAR DAtabase (ODA), OSCAR Package Downloader (OPD)

System Installation Suite (SIS)

Enhancement suite to the SystemImager tool.
Adds SystemInstaller and SystemConfigurator

• SystemInstaller – interface to installation, includes a stand-alone
GUI – Tksis. Allows for description based image creation.

• SystemImager – base tool used to construct & distribute machine
images.

• SystemConfigurator – extension that allows for on-the-fly style
configurations once the install reaches the node, e.g.
‘/etc/modules.conf’.

System Installation Suite (SIS)
• Used in OSCAR to install nodes

– partitions disks, formats disks and installs nodes

• Construct “image” of compute node on headnode
– Directory structure of what the node will contain
– This is a “virtual”, chroot–able environment

/var/lib/systemimager/images/oscarimage/etc/
…/usr/

• Use rsync to copy only differences in files, so can be
used for cluster management
– maintain image and sync nodes to image

C3 Power Tools

• Command-line interface for cluster system
administration and parallel user tools.

• Parallel execution cexec
– Execute across a single cluster or multiple clusters at same time

• Scatter/gather operations cpush / cget
– Distribute or fetch files for all node(s)/cluster(s)

• Used throughout OSCAR and as underlying
mechanism for tools like OPIUM’s useradd
enhancements.

C3 Power Tools

Example to run hostname on all nodes of default cluster:
$ cexec hostname

Example to push an RPM to /tmp on the first 3 nodes
$ cpush :1-3 helloworld-1.0.i386.rpm /tmp

Example to get a file from node1 and nodes 3-6
$ cget :1,3-6 /tmp/results.dat /tmp

Switcher
• Switcher provides a clean interface to edit

environment without directly tweaking .dot files.
– e.g. PATH, MANPATH, path for ‘mpicc’, etc.

• Edit/Set at both system and user level.

• Leverages existing Modules system

• Changes are made to future shells
– To help with “foot injuries” while making shell edits
– Modules already offers facility for current shell manipulation,

but no persistent changes.

OSCAR DAtabase (ODA)

• Used to store OSCAR cluster data

• Currently uses MySQL as DB engine

• User and program friendly interface for database
access

• Capability to extend database commands as
necessary.

OSCAR Package Downloader (OPD)

Tool to download and extract OSCAR Packages.

• Can be used for timely package updates

• Packages that are not included, i.e. “3rd Party”

• Distribute packages with licensing constraints.

OSCAR Packages

OSCAR Packages
• Simple way to wrap software & configuration

– “Do you offer package Foo-bar version X?”

• Basic Design goals
– Keep simple for package authors
– Modular packaging (each self contained)
– Timely release/updates

• Leverage RPM + meta file + scripts, tests, docs, …
– Recently extended to better support RPM, Debs, etc.

• Repositories for downloading via OPD/OPDer

Package Directory Structure
All “included” packages are in $OSCAR_HOME/packages/

directory with OPD acquired in $OSCAR_PACKAGE_HOME

config.xml - meta file w/ list of files to install
doc/ - user.tex, license.tex
distro/ - distro specific binary packages(s)
RPMS/ - [deprecated] binary packages(s)
scripts/ - API scripts
SRPMS/ - source rpm(s)

Example Package – C3
• Pre-built C3 software in RPMS/ directory,

– update: place in distro/<dist-abbrev>

• Userguide & Installation details in doc/

• C3 source package in SRPMS/

• Generate configuration file, /etc/c3.conf, using
scripts/post_clients

• List metadata and installation files with target location
(server/client) in config.xml

OSCAR Summary
• Framework for cluster management

– simplifies installation, configuration and operation
– reduces time/learning curve for cluster build

• requires: pre-installed headnode w. supported Linux distribution
• thereafter: wizard guides user thru setup/install of entire cluster

• Package-based framework
– Content: Software + Configuration, Tests, Docs
– Types:

• Core: SIS, C3, Switcher, ODA, OPD, APItest, Support Libs
• Non-core: selected & third-party (PVM, LAM/MPI, Toque/Maui,...)

– Access: repositories accessible via OPD/OPDer

OSCAR “flavors”

• OSCAR is a snap-shot of best-known-methods for building, programming
and using clusters of a “reasonable” size.

• To bring uniformity to clusters, foster commercial versions of OSCAR, and
make clusters more broadly acceptable.

• Consortium of research, academic & industry members cooperating in the
spirit of open source.

The OSCAR strategy

Other OSCAR
Flavors

HA-OSCAR, Thin-
OSCAR, SSS-

OSCAR, SSI-OSCAR

Open Source
OSCAR with

Linux

Commercially supported
Value added

instantiations of
OSCAR

NEC Enhanced OSCAR

NEC's OSCAR-Pro

• OSCAR'06 Keynote by Erich Focht
– leverage open source tool
– two approaches for re-uses: fork / join

• Commercial enhancements
– integrate additions when applicable
– feedback and direction based on user needs

High-Availability OSCAR

HA-OSCAR:

• The first known field-grade
open source HA Beowulf
cluster release

• Self-configuration Multi-head
Beowulf system

• HA and HPC clustering
techniques to enable critical
HPC infrastructure

• Services:
Active/Hot Standby

• Self-healing with 3-5 sec
automatic failover time

RAS Management for HPC cluster: Self-Awareness

Diskless OSCAR

Thin-OSCAR
• First released in 2003
• Why diskless – disks are problems…

– costs: initial, power, heat, failures
• Root RAM technique

– uses ram disks (/dev/ramXX)
– compressed RAM disk image transferred by network at each boot
– minimal system in RAM (~20Mb)

• Root RAM advantages over NFS
– less network traffic for the os
– uses ram only in the exact size of files
– less stress on the server
– images are accessed read only
– nodes more independent from the server

Scalable System Software OSCAR

Scalable System Software
• Problems

– Computer centers use incompatible, ad hoc set of systems tools
– Tools are not designed to scale to multi-Teraflop systems
– Duplication of work to try and scale tools
– System growth vs. Administrator growth

• Goals
– Define standard interfaces for system components
– Create scalable, standardized management tools
– (Subsequently) reduce costs & improve efficiency at centers

• Participants
– DOE Labs: ORNL, ANL, LBNL, PNNL, SNL, LANL, Ames
– Academics: NCSA, PSC, SDSC
– Industry: IBM, Cray, Intel, SGI

SSS Project Overview
• Map out functional areas

– Schedulers, Job Mangers
– System Monitors
– Accounting & User management
– Checkpoint/Restart
– Build & Configuration systems

• Standardize the system interfaces
– Open forum of universities, labs, industry reps
– Define component interfaces in XML
– Develop communication infrastructure

Accounting

Event
Manager

Service
Directory

Meta
Scheduler

Meta
Monitor

Meta
Manager

Scheduler

Node State
Manager

Allocation
Management

Process
Manager

Usage
Reports

System &
Job Monitor

Job Queue
Manager

Node
Configuration

& Build
Manager

authentication
communication

Checkpoint /
Restart

Hardware
Infrastructure

Manager

Meta Services

Node State
Manager

Components written in any
mixture of C, C++, Java,
Perl, and Python can be
integrated into the Scalable
Systems Software Suite

Standard
XML

Interfaces

SSS-OSCAR Components
• Bamboo – Queue/Job Manager

• BLCR – Berkeley Checkpoint/Restart

• Gold – Accounting & Allocation Management System

• LAM/MPI (w/ BLCR) – Checkpoint/Restart enabled MPI

• MAUI-SSS – Job Scheduler

• SSSLib – SSS Communication library
– Includes: SD, EM, PM, BCM, NSM, NWI

• Warehouse – Distributed System Monitor

• MPD2 – MPI Process Manager

Single System Image OSCAR

Motivation
● OSCAR benefits

– Ease cluster installation and management
– Setup a traditional Beowulf cluster

● Parallel application runtime/middle-ware (MPI, PVM)
● Notion of headnode (e.g. central management of the

distributed file system)

● But how?
– execute legacy applications not designed for

clusters (shared memory applications)
– execute sequential application designed for large

servers

Motivations (2)
● One approach: resource abstraction

adapted to application needs
● Some examples

– shared memory applications
● abstraction of the memory (via a software distributed

memory)
● abstraction of the process/thread scheduling

– sequential application needing out-of-core
computation: abstraction of the memory

SSI - Single System Image
● Global management of distributed

resources: memory, disk, CPU, network
● Create an abstraction of resources
● Ultimate SSI: vision of an SMP machine

– one single huge memory
– a set of local processors
– a single file system

SSI-OSCAR

● Combine benefits of both OSCAR and SSIs
– ease the installation and management of the cluster
– ease the use of the cluster

● Integration of Kerrighed
– SSI at the kernel level
– extension of the Linux kernel
– developed in France, IRISA/INRIA in collaboration

with EDF and DGA

Single System Image -
Implementation

● Different approached are possible for the
implementation of SSIs

User level: middle-ware

Kernel level: OS

Hardware level

Limitations for functionalities
and efficiency (e.g. CONDOR)

Complex to develop
and maintain
(e.g. OpenMOSIX, Kerrighed)

More expensive (e.g. SGI)

SSI at the Kernel Level

● Implies the implementation of 4 different
features
– global management of the memory
– global management of processes/threads
– global management of disks
– global management of network communications

● We will detail these features

Global Memory Management
● Goal: Extend traditional memory management

cluster scale

Memory

Node 1

Thread
1

Thread
2

x

Global Memory Management
● Goal: Extend traditional memory management

cluster scale

Memory

Node 1

Thread
1

Thread
2

x
read/write

Global Memory Management
● Goal: Extend traditional memory management

cluster scale

Memory

Node 1

Thread
1

Thread
2

x
read/write read/write

Global Memory Management
● Goal: Extend traditional memory management

cluster scale

Memory

Node 1

Thread
1

Thread
2

x
read/write

Node 2

Memory

Thread
3

read/write?read/write

● Software Distributed Shared Memory

Global Memory Management

Memory

Node 1 Node 2

Memory

Thread
1

Thread
2

Thread
3

Software Distributed Shared Memory

● Software Distributed Shared Memory

Global Memory Management

Memory

Node 1 Node 2

Memory

Thread
1

Thread
2

Thread
3

Software Distributed Shared Memory
x

● Software Distributed Shared Memory

Global Memory Management

Memory

Node 1 Node 2

Memory

Thread
1

Thread
2

Thread
3

Software Distributed Shared Memory
x

read

● Software Distributed Shared Memory

Global Memory Management

Memory

Node 1 Node 2

Memory

Thread
1

Thread
2

Thread
3

Software Distributed Shared Memory
x

read

● Software Distributed Shared Memory

Global Memory Management

Memory

Node 1 Node 2

Memory

Thread
1

Thread
2

Thread
3

Software Distributed Shared Memory
x

read
x

● Software Distributed Shared Memory

Global Memory Management

Memory

Node 1 Node 2

Memory

Thread
1

Thread
2

Thread
3

Software Distributed Shared Memory
x x

read

● Software Distributed Shared Memory

Global Memory Management

Memory

Node 1 Node 2

Memory

Thread
1

Thread
2

Thread
3

Software Distributed Shared Memory
x x

read
x

Thread
2

● Software Distributed Shared Memory

Global Memory Management

Memory

Node 1 Node 2

Memory

Thread
1

Thread
3

Software Distributed Shared Memory
x x x

write

● Software Distributed Shared Memory

Global Memory Management

Memory

Node 1 Node 2

Memory

Thread
1

Thread
2

Thread
3

Software Distributed Shared Memory
x

write
x xINV INV

● Software Distributed Shared Memory

Global Memory Management

Memory

Node 1 Node 2

Memory

Thread
1

Thread
2

Thread
3

Software Distributed Shared Memory
x x x

write
INV INVx=6

Load Balancing: Introduction

● We want to have a efficient cluster use
– High application throughput
– Efficient resource use
Find a good repartition of application into the

cluster to use in the best way resources
● Control of processes/threads during the

application deployment and execution

Load Balancing

Node 1 Node 2

Node 4Node 3

(1) What is the cluster state ?

Load Balancing

Node 1 Node 2

Node 4Node 3

(1) What is the cluster state ?

Load Balancing

Node 1 Node 2

Node 4Node 3

(2) When schedule processes ?

(1) What is the cluster state ?

Load Balancing

Node 1 Node 2

Node 4Node 3

(3) What process can be
scheduled ?

(2) When schedule processes ?

(1) What is the cluster state ?

Load Balancing

Node 1 Node 2

Node 4Node 3

(3) What process can be
scheduled ?

(2) When schedule processes ?

(1) What is the cluster state ?

Load Balancing

Node 1 Node 2

Node 4Node 3 (4) On which node the process
can be scheduled ?

(3) What process can be
scheduled ?

(2) When schedule processes ?

(1) What is the cluster state ?

Load Balancing

Node 1 Node 2

Node 4Node 3 (4) On which node the process
can be scheduled ?

(3) What process can be
scheduled ?

(2) When schedule processes ?

(1) What is the cluster state ?

Load Balancing

Node 1 Node 2

Node 4Node 3 (4) On which node the process
can be scheduled ?

(3) What process can be
scheduled ?

(2) When schedule processes ?

(1) What is the cluster state ?

Kerrighed: an SSI at the Kernel Level

The Kerrighed Project

● Aims at globally manage all resources: CPU,
memory, disk, IPC

● Developed in France, IRISA/INRIA, in
collaboration with EDF and DGA

● KerLabs has been created to support Kerrighed
● Part of the European Project XtreemOS

Global Resource Management in
Kerrighed
● Based on the idea of the extension of existing

mechanisms
– limits modifications inside the kernel
– keep the same interfaces most of the time

● To explain that, we will detail two examples
– global file management
– global process management

File Management in Linux

File System

File cache

Disk manager

Read

File Management in Linux

File System

File cache

Disk manager

Read

Lookup_page

File Management in Linux

File System

File cache

Disk manager

Read

Read_page

Lookup_page

File Management in Linux

File System

File cache

Disk manager

WriteRead

Read_page

Lookup_page

File Management in Linux

File System

File cache

Disk manager

Write_page

WriteRead

Read_page

Lookup_page

File Management and Containers

File System

Disk Manager

WriteRead

Container

File Management and Containers

File System

Disk Manager

WriteRead

File Interface Linker
Lookup_page

Grab_PageGet_Page

Container

File Management and Containers

File System

Disk Manager

WriteRead

File Interface Linker
Lookup_page

Grab_PageGet_Page

Container

File I/O Linker
First_Touch Invalidate_Page

Write_pageRead_page

Containers Architecture

Container

Resource manager

System Service System Service

Interface Linker Interface Linker

I/O Linker

Memory

Containers Overview

● Share object cluster wide and transparently
● May be used for the implementation

– distributed file system
– parallel file system
– RAID file system
– software distributed shared memory
– distributed cache
– remote memory allocation
– etc.

Global Process Management

● We need to be able to extract a process/thread
and move it somewhere else (another node,
disk, memory)

● Concept of process extraction / process
abstraction
– process image
– simple interfaces to manipulate processes cluster

wide
=> concept of ghost process

Inside the Linux Kernel

task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Physical pagesMemory image

Text

Data

Stack

d_inode

d_inode

Socket
i_pipe

Socket
i_pipe

FileDentry
Inode

d_inode
Socket
i_pipe

NIC

Inside the Linux Kernel

task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Physical pagesMemory image

Text

Data

Stack

d_inode

d_inode

Socket
i_pipe

Socket
i_pipe

FileDentry
Inode

d_inode
Socket
i_pipe

NIC

Process Meta Data Process Data

task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Physical pagesMemory image

Text

Data

Stack

Dentry
Inode

d_inode

d_inode

d_inode

Socket
i_pipe

Socket
i_pipe

Socket
i_pipe

File

NIC

Inside the Linux Kernel (2)

task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Physical pagesMemory image

Text

Data

Stack

Dentry
Inode

d_inode

d_inode

d_inode

Socket
i_pipe

Socket
i_pipe

Socket
i_pipe

File

NIC

Inside the Linux Kernel (2)

task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Dentry
Inode

d_inode

d_inode

d_inode

Socket
i_pipe

Socket
i_pipe

Socket
i_pipe

File

NIC

Inside the Linux Kernel (2)

task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Dentry
Inode

d_inode

d_inode

d_inode

Socket
i_pipe

Socket
i_pipe

Socket
i_pipe

File

NIC

Container

Container

Inside the Linux Kernel (2)

task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Container

Container

Inside the Linux Kernel (2)

task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Container

Container

Container

Inside the Linux Kernel (2)

task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Container

Container

Container

Inside the Linux Kernel (2)

KerNet Pipe

task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Container

Container

Container

Inside the Linux Kernel (2)

KerNet Pipe

KerNet Socket

The SSI-OSCAR Package

SSI-OSCAR Package Creation

● 4 steps
– create binary packages: kernel, modules, tools,

includes
– create configuration scripts: pre/post-install
– integrate OSCAR tests & documentation
– create the XML config file
=> OSCAR packages

OPKG Creation – Binary Packages

● Ease the software integration
● Guarantee coherency regarding your Linux

distribution
● Package list

– kernel
– module
– lib
– headers
– tools

OPKG Creation - Scripts

● Pre-installation script
– add the Kerrighed into the image
– based on kernel_picker (OSCAR tool)

● Post-installation script: Create configuration
files for Kerrighed
– based on the compute node list
– adapted to your cluster configuration

SSI-OSCAR Installation Process
● Download, select and configure the package (OSCAR

step 0, 1, and 2)
● Install the package on the headnode (OSCAR step 3)

– install the Kerrighed kernel
● Create the image w/ Kerrighed libs, modules, and

tools (OSCAR step 4)
● Run the pre-install script (OSCAR step 4)

– add the kernel into the image

● Run the post-install script (OSCAR step 7)
– create configuration files

Resources
● SSI-OSCAR websit http://ssi-oscar.gforge.inria.fr/

● Kerrighed website http://www.kerrighed.org/

● KerLabs website http://www.kerlabs.com/

● OSCAR website http://oscar.openclustergroup.org/

OSCAR Research supported by the Mathematics, Information and Computational
Sciences Office, Office of Advanced Scientific Computing Research, Office of
Science, U. S. Department of Energy, under contract No. DE-AC05-00OR22725
with UT-Battelle, LLC.

	SSI-OSCARSingle System Image - Open Source Cluster Application Resources
	Tutorial Structure
	OSCAR Project Overview
	OSCAR Background
	Open Cluster Group
	OSCAR Core Organizations
	What does OSCAR do?
	Design Goals
	OSCAR Wizard
	Open Source Cluster Application Resources
	OSCAR Core
	OSCAR Components
	System Installation Suite (SIS)
	System Installation Suite (SIS)
	C3 Power Tools
	C3 Power Tools
	Switcher
	OSCAR DAtabase (ODA)
	OSCAR Package Downloader (OPD)
	OSCAR Packages
	OSCAR Packages
	Package Directory Structure
	Example Package – C3
	OSCAR Summary
	 OSCAR “flavors”
	NEC Enhanced OSCAR
	NEC's OSCAR-Pro
	High-Availability OSCAR
	HA-OSCAR:
	Diskless OSCAR
	Thin-OSCAR
	Scalable System Software OSCAR
	Scalable System Software
	SSS Project Overview
	SSS-OSCAR Components
	Single System Image OSCAR
	Motivation
	Motivations (2)
	SSI - Single System Image
	SSI-OSCAR
	Single System Image - Implementation
	SSI at the Kernel Level
	Global Memory Management
	Global Memory Management
	Global Memory Management
	Global Memory Management
	Global Memory Management
	Global Memory Management
	Global Memory Management
	Global Memory Management
	Global Memory Management
	Global Memory Management
	Global Memory Management
	Global Memory Management
	Global Memory Management
	Global Memory Management
	Load Balancing: Introduction
	Load Balancing
	Load Balancing
	Load Balancing
	Load Balancing
	Load Balancing
	Load Balancing
	Load Balancing
	Load Balancing
	
	The Kerrighed Project
	Global Resource Management in Kerrighed
	File Management in Linux
	File Management in Linux
	File Management in Linux
	File Management in Linux
	File Management in Linux
	File Management and Containers
	File Management and Containers
	File Management and Containers
	Containers Architecture
	Containers Overview
	Global Process Management
	Inside the Linux Kernel
	Inside the Linux Kernel
	Inside the Linux Kernel (2)
	Inside the Linux Kernel (2)
	Inside the Linux Kernel (2)
	Inside the Linux Kernel (2)
	Inside the Linux Kernel (2)
	Inside the Linux Kernel (2)
	Inside the Linux Kernel (2)
	Inside the Linux Kernel (2)
	
	SSI-OSCAR Package Creation
	OPKG Creation – Binary Packages
	OPKG Creation - Scripts
	SSI-OSCAR Installation Process
	Resources

