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Tutorial Structure 

• OSCAR Overview
– Brief background and project overview
– Highlight core tools leveraged by OSCAR
– Describe the extensible package system
– Summary of “spin-off” projects

• SSI-OSCAR
– Presentation of SSI concept
– Overview of the Kerrighed SSI
– Overview of SSI-OSCAR Package



OSCAR Project Overview



OSCAR Background
• Concept first discussed in January 2000

• First organizational meeting in April 2000
– Cluster assembly is time consuming & repetitive
– Nice to offer a toolkit to automate

• First public release in April 2001

• Use “best practices” for HPC clusters
– Leverage wealth of open source components
– Target modest size cluster (single network switch)

• Form umbrella organization to oversee cluster efforts
– Open Cluster Group (OCG)



Open Cluster Group
• Informal group formed to make cluster computing more 

practical for HPC research and development

• Membership is open, direct by steering committee
– Research/Academic
– Industry

• Current active working groups
– [HPC]-OSCAR
– Thin-OSCAR (diskless)
– HA-OSCAR (high availability)
– SSI-OSCAR (single system image)
– SSS-OSCAR (Scalable Systems Software)



OSCAR Core Organizations



What does OSCAR do?
• Wizard based cluster software installation

– Operating system
– Cluster environment

• Automatically configures cluster components

• Increases consistency among cluster builds

• Reduces time to build / install a cluster

• Reduces need for expertise



Design Goals
• Reduce overhead for cluster management

– Keep the interface simple
– Provide basic operations of cluster software & node administration
– Enable others to re-use and extend system – deployment tool

• Leverage “best practices” whenever possible
– Native package systems
– Existing distributions
– Management, system and applications

• Extensibility for new Software and Projects
– Modular meta-package system / API – “OSCAR Packages”
– Keep it simple for package authors
– Open Source to foster reuse and community participation
– Fosters “spin-offs” to reuse OSCAR framework



OSCAR Wizard



Open Source Cluster Application Resources

Step 1 Start…

Step 2

Step 3
Step 4

Step 5

Step 7
Step 8 Done!

Step 6



OSCAR Core



OSCAR Components
• Administration/Configuration 

– SIS, C3, OPIUM, Kernel-Picker & cluster services (dhcp, nfs, ntp, ...)
– Security: Pfilter, OpenSSH

• HPC Services/Tools
– Parallel Libs: MPICH, LAM/MPI, PVM
– OpenPBS/MAUI
– HDF5
– Ganglia, Clumon, … [monitoring systems]
– Other 3rd party OSCAR Packages

• Core Infrastructure/Management
– System Installation Suite (SIS), Cluster Command & Control (C3), Env-

Switcher 
– OSCAR DAtabase (ODA), OSCAR Package Downloader (OPD)



System Installation Suite (SIS)

Enhancement suite to the SystemImager tool.
Adds SystemInstaller and SystemConfigurator

• SystemInstaller – interface to installation, includes a stand-alone 
GUI – Tksis.  Allows for description based image creation.

• SystemImager – base tool used to construct & distribute machine 
images.  

• SystemConfigurator – extension that allows for on-the-fly style 
configurations once the install reaches the node, e.g. 
‘/etc/modules.conf’.



System Installation Suite (SIS)
• Used in OSCAR to install nodes

– partitions disks, formats disks and installs nodes

• Construct “image” of compute node on headnode
– Directory structure of what the node will contain
– This is a “virtual”, chroot–able environment

/var/lib/systemimager/images/oscarimage/etc/
…/usr/ 

• Use rsync to copy only differences in files, so can be 
used for cluster management 
– maintain image and sync nodes to image



C3 Power Tools

• Command-line interface for cluster system 
administration and parallel user tools.

• Parallel execution cexec
– Execute across a single cluster or multiple clusters at same time

• Scatter/gather operations cpush / cget
– Distribute or fetch files for all node(s)/cluster(s)

• Used throughout OSCAR and as underlying 
mechanism for tools like OPIUM’s useradd
enhancements.



C3 Power Tools

Example to run hostname on all nodes of default cluster:
$ cexec hostname

Example to push an RPM to /tmp on the first 3 nodes
$ cpush :1-3 helloworld-1.0.i386.rpm /tmp

Example to get a file from node1 and nodes 3-6
$ cget :1,3-6 /tmp/results.dat  /tmp



Switcher
• Switcher provides a clean interface to edit 

environment without directly tweaking .dot files.
– e.g. PATH, MANPATH, path for ‘mpicc’, etc.

• Edit/Set at both system and user level.

• Leverages existing Modules system

• Changes are made to future shells
– To help with “foot injuries” while making shell edits
– Modules already offers facility for current shell manipulation, 

but no persistent changes.



OSCAR  DAtabase  (ODA)

• Used to store OSCAR cluster data

• Currently uses MySQL as DB engine

• User and program friendly interface for database 
access 

• Capability to extend database commands as 
necessary.



OSCAR Package Downloader (OPD)

Tool to download and extract OSCAR Packages.

• Can be used for timely package updates

• Packages that are not included, i.e. “3rd Party”

• Distribute packages with licensing constraints.



OSCAR Packages



OSCAR Packages
• Simple way to wrap software & configuration

– “Do you offer package Foo-bar version X?”

• Basic Design goals
– Keep simple for package authors
– Modular packaging (each self contained)
– Timely release/updates

• Leverage RPM + meta file + scripts, tests, docs, …
– Recently extended to better support RPM, Debs, etc.

• Repositories for downloading via OPD/OPDer



Package Directory Structure
All “included” packages are in $OSCAR_HOME/packages/

directory with OPD acquired in $OSCAR_PACKAGE_HOME

config.xml - meta file w/ list of files to install 
doc/ - user.tex, license.tex
distro/ - distro specific binary packages(s)
RPMS/ - [deprecated] binary packages(s)
scripts/ - API scripts
SRPMS/ - source rpm(s)



Example Package – C3
• Pre-built C3 software in  RPMS/ directory,

– update: place in distro/<dist-abbrev>

• Userguide & Installation details in doc/

• C3 source package in SRPMS/

• Generate configuration file, /etc/c3.conf, using 
scripts/post_clients

• List metadata and installation files with target location 
(server/client) in config.xml



OSCAR Summary
• Framework for cluster management

– simplifies installation, configuration and operation
– reduces time/learning curve for cluster build

• requires: pre-installed headnode w. supported Linux distribution
• thereafter: wizard guides user thru setup/install of entire cluster

• Package-based framework
– Content:  Software  +  Configuration, Tests, Docs
– Types:

• Core:  SIS, C3, Switcher, ODA, OPD, APItest, Support Libs
• Non-core: selected & third-party (PVM, LAM/MPI, Toque/Maui,...)

– Access: repositories accessible via OPD/OPDer



OSCAR “flavors”



• OSCAR is a snap-shot of best-known-methods for building, programming 
and using clusters of a “reasonable” size.

• To bring uniformity to clusters, foster commercial versions of OSCAR, and 
make clusters more broadly acceptable.

• Consortium of research, academic & industry members cooperating in the 
spirit of open source.

The OSCAR strategy

Other OSCAR 
Flavors

HA-OSCAR, Thin-
OSCAR, SSS-

OSCAR, SSI-OSCAR

Open Source 
OSCAR with 

Linux

Commercially supported 
Value added 

instantiations of 
OSCAR



NEC Enhanced OSCAR



NEC's   OSCAR-Pro

• OSCAR'06 Keynote by Erich Focht
– leverage open source tool
– two approaches for re-uses: fork / join

• Commercial enhancements
– integrate additions when applicable
– feedback and direction based on user needs



High-Availability OSCAR



HA-OSCAR: 

• The first known field-grade 
open source HA Beowulf 
cluster release

• Self-configuration Multi-head 
Beowulf system

• HA and HPC clustering 
techniques to enable critical 
HPC infrastructure

• Services:
Active/Hot Standby

• Self-healing with 3-5 sec 
automatic failover time 

RAS Management for HPC cluster: Self-Awareness



Diskless OSCAR



Thin-OSCAR
• First released in 2003
• Why diskless – disks are problems…

– costs: initial, power, heat, failures
• Root RAM technique

– uses ram disks (/dev/ramXX)
– compressed RAM disk image transferred by network at each boot
– minimal system in RAM (~20Mb)

• Root RAM advantages over NFS
– less network traffic for the os
– uses ram only in the exact size of files
– less stress on the server
– images are accessed read only
– nodes more independent from the server



Scalable System Software OSCAR



Scalable System Software
• Problems

– Computer centers use incompatible, ad hoc set of systems tools
– Tools are not designed to scale to multi-Teraflop systems
– Duplication of work to try and scale tools
– System growth  vs.  Administrator growth

• Goals
– Define standard interfaces for system components
– Create scalable, standardized management tools
– (Subsequently) reduce costs & improve efficiency at centers

• Participants
– DOE Labs: ORNL, ANL, LBNL, PNNL, SNL, LANL, Ames
– Academics: NCSA, PSC, SDSC
– Industry: IBM, Cray, Intel, SGI



SSS Project Overview
• Map out functional areas

– Schedulers, Job Mangers
– System Monitors
– Accounting & User management
– Checkpoint/Restart
– Build & Configuration systems

• Standardize the system interfaces
– Open forum of universities, labs, industry reps
– Define component interfaces in XML
– Develop communication infrastructure



Accounting

Event 
Manager

Service
Directory

Meta
Scheduler

Meta
Monitor

Meta
Manager

Scheduler

Node State
Manager

Allocation
Management

Process 
Manager

Usage
Reports

System &
Job Monitor

Job Queue
Manager

Node
Configuration 

& Build
Manager

authentication 
communication

Checkpoint /
Restart

Hardware
Infrastructure

Manager
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Node State
Manager

Components written in any 
mixture of C, C++, Java, 
Perl, and Python can be 
integrated into the Scalable 
Systems Software Suite

Standard 
XML  

Interfaces



SSS-OSCAR Components
• Bamboo – Queue/Job Manager

• BLCR – Berkeley Checkpoint/Restart

• Gold – Accounting & Allocation Management System

• LAM/MPI (w/ BLCR) – Checkpoint/Restart enabled MPI

• MAUI-SSS – Job Scheduler

• SSSLib – SSS Communication library
– Includes: SD, EM, PM, BCM, NSM, NWI

• Warehouse – Distributed System Monitor

• MPD2 – MPI Process Manager



Single System Image OSCAR



Motivation
● OSCAR benefits

– Ease cluster installation and management
– Setup a traditional Beowulf cluster

● Parallel application runtime/middle-ware (MPI, PVM)
● Notion of headnode (e.g. central management of the 

distributed file system)

● But how?
– execute legacy applications not designed for 

clusters (shared memory applications)
– execute sequential application designed for large 

servers



Motivations (2)
● One approach: resource abstraction 

adapted to application needs
● Some examples

– shared memory applications
● abstraction of the memory (via a software distributed 

memory)
● abstraction of the process/thread scheduling

– sequential application needing out-of-core 
computation: abstraction of the memory



SSI - Single System Image
● Global management of distributed 

resources: memory, disk, CPU, network
● Create an abstraction of resources
● Ultimate SSI: vision of an SMP machine

– one single huge memory
– a set of local processors
– a single file system



SSI-OSCAR

● Combine benefits of both OSCAR and SSIs
– ease the installation and management of the cluster
– ease the use of the cluster

● Integration of Kerrighed
– SSI at the kernel level
– extension of the Linux kernel
– developed in France, IRISA/INRIA in collaboration 

with EDF and DGA



Single System Image -
Implementation

● Different approached are possible for the 
implementation of SSIs

User level: middle-ware

Kernel level: OS

Hardware level

Limitations for functionalities 
and efficiency (e.g. CONDOR)

Complex to develop 
and maintain 
(e.g. OpenMOSIX, Kerrighed)

More expensive (e.g. SGI)



SSI at the Kernel Level

● Implies the implementation of 4 different 
features
– global management of the memory
– global management of processes/threads
– global management of disks
– global management of network communications

● We will detail these features



Global Memory Management
● Goal: Extend traditional memory management 

cluster scale

Memory

Node 1

Thread 
1

Thread 
2

x



Global Memory Management
● Goal: Extend traditional memory management 

cluster scale

Memory

Node 1

Thread 
1

Thread 
2

x
read/write



Global Memory Management
● Goal: Extend traditional memory management 

cluster scale

Memory

Node 1

Thread 
1

Thread 
2

x
read/write read/write



Global Memory Management
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● Software Distributed Shared Memory 
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● Software Distributed Shared Memory 
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● Software Distributed Shared Memory 
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Load Balancing: Introduction

● We want to have a efficient cluster use
– High application throughput
– Efficient resource use
Find a good repartition of application into the 

cluster to use in the best way resources
● Control of processes/threads during the 

application deployment and execution



Load Balancing

Node 1 Node 2

Node 4Node 3

(1) What is the cluster state ?
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Load Balancing
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Load Balancing
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Load Balancing
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can be scheduled ?

(3) What process can be 
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(1) What is the cluster state ?



Kerrighed: an SSI at the Kernel Level



The Kerrighed Project

● Aims at globally manage all resources: CPU, 
memory, disk, IPC

● Developed in France, IRISA/INRIA, in 
collaboration with EDF and DGA

● KerLabs has been created to support Kerrighed
● Part of the European Project XtreemOS



Global Resource Management in 
Kerrighed
● Based on the idea of the extension of existing 

mechanisms
– limits modifications inside the kernel
– keep the same interfaces most of the time

● To explain that, we will detail two examples
– global file management
– global process management



File Management in Linux

File System

File cache

Disk manager

Read
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File Management and Containers

File System

Disk Manager

WriteRead

Container



File Management and Containers
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File Management and Containers

File System

Disk Manager

WriteRead

File Interface Linker
Lookup_page

Grab_PageGet_Page

Container

File I/O Linker
First_Touch Invalidate_Page

Write_pageRead_page



Containers Architecture

Container

Resource manager

System Service System Service

Interface Linker Interface Linker

I/O Linker

Memory



Containers Overview

● Share object cluster wide and transparently
● May be used for the implementation

– distributed file system
– parallel file system
– RAID file system
– software distributed shared memory
– distributed cache
– remote memory allocation
– etc.



Global Process Management

● We need to be able to extract a process/thread 
and move it somewhere else (another node, 
disk, memory)

● Concept of process extraction / process 
abstraction
– process image
– simple interfaces to manipulate processes cluster 

wide
=> concept of ghost process



Inside the Linux Kernel

task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Physical pagesMemory image

Text

Data

Stack

d_inode

d_inode

Socket
i_pipe

Socket
i_pipe

FileDentry
Inode

d_inode
Socket
i_pipe

NIC



Inside the Linux Kernel

task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Physical pagesMemory image

Text

Data

Stack

d_inode

d_inode

Socket
i_pipe

Socket
i_pipe

FileDentry
Inode

d_inode
Socket
i_pipe

NIC

Process Meta Data Process Data



task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Physical pagesMemory image

Text

Data

Stack

Dentry
Inode

d_inode

d_inode

d_inode

Socket
i_pipe

Socket
i_pipe

Socket
i_pipe

File

NIC

Inside the Linux Kernel (2)



task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Physical pagesMemory image

Text

Data

Stack

Dentry
Inode

d_inode

d_inode

d_inode

Socket
i_pipe

Socket
i_pipe

Socket
i_pipe

File

NIC

Inside the Linux Kernel (2)



task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Dentry
Inode

d_inode

d_inode

d_inode

Socket
i_pipe

Socket
i_pipe

Socket
i_pipe

File

NIC

Inside the Linux Kernel (2)



task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Dentry
Inode

d_inode

d_inode

d_inode

Socket
i_pipe

Socket
i_pipe

Socket
i_pipe

File

NIC

Container

Container

Inside the Linux Kernel (2)



task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Container

Container

Inside the Linux Kernel (2)



task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Container

Container

Container

Inside the Linux Kernel (2)



task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Container

Container

Container

Inside the Linux Kernel (2)

KerNet Pipe



task_struct

Mm

Mm_struct

mmap

Vm_area_struct

mmap_cache

File_struct

File_fd

File

File *fd_array

files
Vm_end
Vm_file

Vm_end
Vm_file

Vm_start

Vm_start

Pid

p_ysptr

task_struct
Pid

task_struct
Pid

p_pptr

Tty

Container

Container

Container

Inside the Linux Kernel (2)

KerNet Pipe

KerNet Socket



The SSI-OSCAR Package



SSI-OSCAR Package Creation

● 4 steps
– create binary packages: kernel, modules, tools, 

includes
– create configuration scripts: pre/post-install
– integrate OSCAR tests & documentation
– create the XML config file
=> OSCAR packages



OPKG Creation – Binary Packages

● Ease the software integration
● Guarantee coherency regarding your Linux 

distribution
● Package list

– kernel
– module
– lib
– headers
– tools



OPKG Creation - Scripts

● Pre-installation script
– add the Kerrighed into the image
– based on kernel_picker (OSCAR tool)

● Post-installation script: Create configuration 
files for Kerrighed
– based on the compute node list
– adapted to your cluster configuration



SSI-OSCAR Installation Process
● Download, select and configure the package (OSCAR 

step 0, 1, and 2)
● Install the package on the headnode (OSCAR step 3)

– install the Kerrighed kernel
● Create the image w/ Kerrighed libs, modules, and 

tools (OSCAR step 4)
● Run the pre-install script (OSCAR step 4)

– add the kernel into the image

● Run the post-install script (OSCAR step 7)
– create configuration files



Resources
● SSI-OSCAR websit http://ssi-oscar.gforge.inria.fr/

● Kerrighed website   http://www.kerrighed.org/

● KerLabs website     http://www.kerlabs.com/

● OSCAR website   http://oscar.openclustergroup.org/

OSCAR Research supported by the Mathematics, Information and Computational 
Sciences Office, Office of Advanced Scientific Computing Research, Office of 
Science, U. S. Department of Energy, under contract No. DE-AC05-00OR22725 
with UT-Battelle, LLC.
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