OSCAR-Pro

combining research ideas with customer demands

Dr. Erich Focht
NEC HPC Europe

www.hpce.nec.com
Overview

- What is OSCAR?
 - Organization, working groups
 - Functionality and structure
- What is OSCAR-Pro?
 - History
 - Customer examples
 - Features & roadmap
- Open Source and academia + industry cooperation
OSCAR
Open Source Cluster Application Resources

- Snapshot of best known methods for building and running clusters for High Performance Computing
 - leverage wealth of open source components
 - make building and installing clusters reproducible and easy

- initiated: January 2000
- first public release: April 2001

- project organization
 - Open Cluster Group (OCG)
 - consortium of academic/research and industry members
 - OCG working groups
OSCAR Member Organizations

- Academia
 - Oak Ridge National Laboratory
 - U.S. Department of Energy
 - Pervasive Technology Labs
 - Canada's Michael Smith Genome Sciences Centre
 - Louisiana Tech University

- Industry
 - Intel
 - NEC
 - Revolution Linux
 - Bald Guy
OSCAR Working Groups

- OSCAR
- SSI-OSCAR
 - single system image: Kerrighed
- HA-OSCAR
 - high availability master nodes
- SSS-OSCAR
 - scalable systems software
What does OSCAR do?

- Wizard based cluster software installation
 - Operating system (image based deployment)
 - Cluster environment

- Automatically configures cluster components

- Increases consistency among cluster builds

- Reduces time to build / install a cluster

- Reduces need for expertise
Standard cluster
HA-OSCAR Cluster
OSCAR Structure

Installation

OSCAR/SIS Database

Configuration of applications

Configuration of compute nodes

Installation process:
- Select packages
- Configure packages
- Install and configure on master node
- Build images
- Define compute nodes
- Install compute nodes
- Configure packages on whole cluster

PVM
PBS/Maui
MPICH
Ganglia
C3
LAM-MPI
Opium
...
What is OSCAR-Pro?

- OSCAR
- NEC specific add-ons
- Services
- Customer oriented R&D

- Linux cluster solution deployed by NEC HPC Europe to its customers.
NEC HPC Europe: Offices

Düsseldorf / Germany
Stuttgart / Germany
Amsterdam / The Netherlands
London / United Kingdom
Paris / France
Lugano / Switzerland
Milan / Italy
OSCAR-Pro history

- 2001
- 2003
- 2005
- 2006

HPCLinux 3.1
• RedHat based
• Kickstart installer
• manual installation of clustering packages (MPIs, C3, PBS, ...)
• HPCL3.1: automatic config
OSCAR-Pro history

• RedHat based
• Kickstart installer
• manual installation of clustering packages (MPIs, C3, PBS, ...)
• HPCL3.1: automatic config

• reproducibility of the installation?
• quality? effort?
• Opteron coming up: only distro supporting it was SuSE9.0 (8.2)

HPCLinux 3.1

2001 2003 2005 2006
OSCAR-Pro history

- HPCLinux 3.1
- HPCLinux 3.2.x
• OSCAR 2.3.1 fork
• many OSCAR 3.0 packages
• port to SuSE 9.0, SLES8, RHEL3
• x86_64 and ia64 ports
• add-ons: Torque, Ganglia, Nagios, software RAIDs, linux-ha (!), scalability, cluster of clusters, ...
• integration
• OSCAR 2.3.1 fork
• many OSCAR 3.0 packages
• port to SuSE 9.0
• x86_64 and ia64 ports
• add-ons: Torque, Ganglia, Nagios, software RAIDs, linux-ha (!), scalability, cluster ...
• integration

• OSCAR 3.0, 4.0, 4.1, ...
• hard to keep up fork with OSCAR infrastructure changes
• maintenance of add-ons ties resources which are missing for R&D
• testing multitude of versions is time consuming

HPCLinux 3.1

HPCLinux 3.2.x

2001 2003 2005 2006
Strategy change!
• integrate developments back into OSCAR
• NEC joined OSCAR core organizations
• contributed to OSCAR 4.2 (rel.: Nov 2005)
 • x86_64 support, sw-raids, rhel4, packages
 • fixes
 • testing, QA
OSCAR Pro 4
• built strictly on top of OSCAR (4.2)
• fixes and developments for OSCAR5
• more packages donated to OSCAR
• some new developments directly for OSCAR
OSCAR-Pro Development Philosophy

- Use *best known methods* for building, installing, managing and running clusters
- Open Source! (where appropriate)
- Be open: for additional components and integration with closed source products

Integrate

- Autoconfigure components in reasonable way
- Standardize: minimize effort once a new solution has been developed
- ISV application ready (for industrial customers)

- Redundancy and high availability
- Support various architectures, multiple Linux distributions

- **Flexibility, scalability and high performance!**
- *Provide highly customized complex solutions with limited additional effort*
Why Open Source?

Don't “re-invent the wheel”
- minimize effort and development expenses
- only expertise on the used open source solution is needed, no new design, development, team, man-power
- faster “time to solution”

Carefully chose solutions: proven, known
- high quality through many users and testers
- free marketing benefit when using well-known solutions

Own improvements: added value for customers
- development effort needed, but limited
- full control over own version, but still open source

Contribute to the open source development:
- reduces support and maintenance costs
- credibility for NEC open source activities

Customer safety: full insight and control of what they are using

Customers can choose NEC service, or do it themselves
Customer examples

- Sometimes customers want ...
 - ... multiple architectures within the same cluster
 - Xeon, IA64, Opteron, Nocona
 - Extension of existing cluster (no additional mgmt node)
 - Safe migration environment
 - ... different distributions inside the same cluster
 - RHEL3, RHAS2.1, SUSE, FC, RH9, ...
 - e.g. because applications are validated by ISVs for different distros
 - ... multiple interconnect types in same cluster
 - Myrinet, IB, Gbit, ...
Customer examples (1)

- Subclusters have different architecture (and distro)

- Compute nodes
- Dual Xeon
- Linked with IB

- Management head(s), dual Opteron
- Cluster database
- NFS server /home
- C3 head, installer, images, etc...
- Monitoring, heartbeat
Customer examples (2)

- Subclusters have different role: running different applications

- pre- & postprocessing nodes
 - quad opteron

- compute nodes
 - dual opteron
 - linked with myrinet

- NFS servers
 - dual opteron
 - heartbeat
 - ganglia relay

- management head(s), dual opteron
 - cluster database
 - NFS server /home
 - C3 head, installer, images, etc...
 - monitoring, heartbeat
Challenges

- Cannot charge much money for cluster software in HPC!
 - Solution must provide a cheap entry price
 - Earn money with services, solution must be ready for that
 - *The Linux Way of Business*

- Hardware changes every 6 months! (more or less)

- Feature richness in software is key differentiator:
 - Support various distributions
 - Flexibility in supported hardware and configurations
 - Manageability

- Satisfy the cluster administrators!
Strengths

• **Flexibility**
 - Image based installer: different distros, different architectures, safe and controlled upgrading of client nodes
 - Heterogeneous clusters support
 - Easy to extend and integrate additional hardware and software
 - [ROCKS: tied to particular RedHat rebuild and anaconda installer]

• **Scalability**
 - Scalable deployment: atftp, multicast, (soon: bittorrent)
 - Scalable monitoring and management infrastructure

• **Reliability**
 - Mirrored disks
 - High availability (not for every customer!)

• **Ready to use**
 - When installed by trained team

• **Sound open source basis**: OSCAR
OSCAR-Pro 4 Features (1)

- All OSCAR 4.2 features
- Nagios: hardware health monitoring
- Gangmet + Gangnag: Nagios – Ganglia coupling
- sensorsd: Configurable ganglia metrics feeder
- mdassist: Monitor software raids, instructions for handling failures
- Yume: high level package management tool for rpm based distros
- Sync_files: improved version for heterogeneous setups
- SISreload: synchronize SIS database state with cluster nodes
- SC3: (Scalable) Sub-Cluster Command and Control
- Mpicleanup: Cleanup for killed or crashed MPI zombies
- Lamrsh: Allows usage of multiple LAM MPI versions in parallel
- PBSpro: Altair's PBS pro resource manager
- NetBootManager: GUI for managing network booted nodes
OSCAR-Pro 4 Features (2)

• Apctool : Manage power control for cluster via APC PDUs
• Cpower : Manage power control for NEC IPF Blades (through CMM)
• IPMIpower : Manage power control for clusters with IPMI BMCs
• Gscratch : global namespace through cross-automounted /scratch directories
• MPICH : 1.2.7 for gcc, pgi, intel compilers
• LAM MPI : several versions, for gcc, pgi, intel compilers
• Cluster / Image management add-ons
• High Availability (master, if required)
• Myrinet-MX/GM
• Infiniband
Roadmap

- scalability improvements
 - 2000 nodes cluster

- heterogenity
 - integrate SX vector supercomputers

- administration
 - CLI and GUI

- add parallel filesystem support
 - Lustre package

- Single System Image
 - Kerrighed

- from pure cluster toolkit to datacenter management
Open Source Software: Academia & Industry Cooperation

Industry involvement in open source development is important:
- integrate customer requested features
- push and drive productization
- commit resources
- increase credibility and popularity

But:
- decisions controlled by benefit and "return of investment"

Academia & industry complement each other
- research & papers
- customers & products & solutions
Conclusions

- OSCAR is an excellent cluster infrastructure
 - feature-rich, extensible, flexible, good roadmap
 - good platform for building professional solutions

- Endorsement of OSCAR was the right decision!

- Open Source approach is important!
 - fork of OSCAR
 - steep development curve (because of full control)
 - high resource demand for maintenance
 - ties too many resources for development
 - developing with and for OSCAR
 - less maintenance effort
 - more influence on the development direction

- Marketing speak: „win-win situation“